【超音速 专利 CN117576413A】基于全连接网络分类模型的AI涂布抓边处理方法及系统
申请号 | CN202311568976.4 |
公开号(公开) | CN117576413A |
申请日 | 2023.11.22 |
申请人(公开) | 超音速人工智能科技股份有限公司 |
发明人(公开) | 张俊峰(总); 杨培文(总); 沈俊羽; 张小村 |
我的理解
步骤一:获取涂布边缘图像并提取对应的关键点特征;
步骤二:采用卷积以及全连接操作对所述关键点特征进行分析,通过分类头确定关键点的纵坐标、横坐标以及可见性;
步骤三:构建全连接网络分类模型并训练至损失函数收敛,将所述关键点的纵坐标、横坐标以及可见性输入到所述全连接网络分类模型,提取出虚边、融合边和实边在涂布边缘图像边缘处的关键点坐标;
步骤四:将涂布边缘图像的关键点的纵坐标、横坐标以及可见性并输入到完成训练的全连接网络分类模型进行检测并获取虚边、融合边和实边在涂布边缘图像边缘处的关键点坐标,根据关键点坐标确定虚边、融合边和实边的位置。
2.根据权利要求1所述的基于全连接网络分类模型的AI涂布抓边处理方法,其特征在于,所述获取涂布边缘图像并提取对应的关键点特征,包含以下步骤:
获取涂布原始图像并进行预处理将图片转换为统一的格式,所述预处理包括以下一种或多种方式:缩放、裁剪、灰度增强、对比度增强;
通过边缘提取算法确定预处理后的涂布原始图像的第一边缘位置,以第一边缘位置为中心对涂布原始图像进行裁剪,生成涂布边缘图像;
对所述涂布边缘图像进行数据标注,使用带有预训练模型的特征提取网络提取所述涂布边缘图像的关键点特征。
步骤四.根据权利要求1所述的基于全连接网络分类模型的AI涂布抓边处理方法,其特征在于,所述采用卷积以及全连接操作对所述关键点特征进行分析,通过分类头确定关键点的纵坐标、横坐标以及可见性,包括:
所述分类头包含纵坐标分类头、横坐标分类头以及可见性分类头;
通过纵坐标分类头确定关键点的纵坐标,通过横坐标分类头确定关键点的横坐标,通过可见性分类头确定关键点的可见性。
步骤五.根据权利要求3所述的基于全连接网络分类模型的AI涂布抓边处理方法,其特征在于,所述采用卷积以及全连接操作对所述关键点特征进行分析,通过分类头确定关键点的纵坐标、横坐标以及可见性,还包含:
纵坐标分类头通过一维卷积以及全连接操作将图像特征变换成N个一维向量,表示关键点的纵坐标;
横坐标分类头通过一维卷积以及全连接操作将图像特征变换成N个一维向量,表示关键点的横坐标;
可见性分类头通过二维卷积以及全连接操作将图像特征变换成一个长度为N的一维向量,表示关键点的可见性。
步骤六.根据权利要求4所述的基于全连接网络分类模型的AI涂布抓边处理方法,其特征在于,所述通过纵坐标分类头确定关键点的纵坐标,通过横坐标分类头确定关键点的横坐标,通过可见性分类头确定关键点的可见性,还包含:
纵坐标分类头首先对提取的关键点特征通过二维卷积和ReLU激活函数压缩特征;将压缩特征的横坐标方向特征进行展平,进行全连接操作及ReLU激活函数,将其特征维度转变为涂布边缘图像高度的ɑ倍;进行尺度不变的横坐标方向一维卷积操作,得到关键点的纵坐标分类头输出结果;
横坐标分类头首先对提取的关键点特征通过二维卷积和ReLU激活函数压缩特征;接下来将压缩特征的纵坐标方向特征进行展平,进行全连接操作及ReLU激活函数,将其特征维度转变为原图像宽度的ɑ倍;最后,进行尺度不变的纵坐标方向一维卷积操作,得到关键点的横坐标分类头输出结果;
可见性分类头首先对提取的关键点特征经过两次二维卷积将特征长宽进行压缩,再将其进行全局池化、展平、以及全连接操作后得到关键点的可见性分类头输出结果。
步骤七.根据权利要求1所述的基于全连接网络分类模型的AI涂布抓边处理方法,其特征在于,所述获取涂布边缘图像并提取对应的关键点特征,包含:
获取涂布边缘图像,在图像边缘逐渐向外填充特定颜色的像素,每一圈像素的颜色均相同,并保持相邻圈层之间的色度差和饱和度差设定在特定范围内;
将图像标注数据中位于图像边缘的关键点标签移至填充的像素区域最外圈。
步骤八.根据权利要求6所述的基于全连接网络分类模型的AI涂布抓边处理方法,其特征在于,包含:
所述全连接网络分类模型进行推理时需要根据不同关键点类型将预测的关键点移至图像边缘处;
所述全连接网络分类模型提取的关键点包括虚边、实边、融合边在图像边缘位置的两个关键点坐标,根据两点确定一条直线的原理确定虚边、融合边和实边的位置。
步骤九.一种基于全连接网络分类模型的AI涂布抓边处理系统,包括:
处理模块,用于获取涂布边缘图像并提取对应的关键点特征;
分析模块,采用卷积以及全连接操作对所述关键点特征进行分析,通过分类头确定关键点的纵坐标、横坐标以及可见性;
训练模块,构建全连接网络分类模型并训练至损失函数收敛,将所述关键点的纵坐标、横坐标以及可见性输入到所述全连接网络分类模型,提取出虚边、融合边和实边在涂布边缘图像边缘处的关键点坐标;
检测模块,将涂布边缘图像的关键点的纵坐标、横坐标以及可见性并输入到完成训练的全连接网络分类模型进行检测并获取虚边、融合边和实边在涂布边缘图像边缘处的关键点坐标,根据关键点坐标确定虚边、融合边和实边的位置。
步骤十.一种计算机设备,其特征在于,包括处理器和存储器,所述存储器用于存储可执行的指令,所述指令用于控制所述处理器执行根据权利要求1至7中任一项所述的方法。
步骤十二.一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序在被处理器执行时实现如权利要求1至7中任一项所述的方法。
如果有不明白的,请加文末QQ群。
扩展阅读
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关推荐
我想对大家说的话 |
---|
《喜缺全书算法册》以原理、正确性证明、总结为主。 |
按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。
相关文章:

【超音速 专利 CN117576413A】基于全连接网络分类模型的AI涂布抓边处理方法及系统
申请号CN202311568976.4公开号(公开)CN117576413A申请日2023.11.22申请人(公开)超音速人工智能科技股份有限公司发明人(公开)张俊峰(总); 杨培文(总); 沈俊羽…...

iPhone数据恢复篇:iPhone 数据恢复软件有哪些
问题:iPhone 15 最好的免费恢复软件是什么?我一直在寻找一个恢复程序来恢复从iPhone中意外删除的照片,联系人和消息,但是我有很多选择。 谷歌一下,你会发现许多付费或免费的iPhone数据恢复工具,声称它们可…...

Html5+Css3学习笔记
Html5 CSS3 一、概念 1.什么是html5 html: Hyper Text Markup Language ( 超文本标记语言) 文本:记事本 超文本: 文字、图片、音频、视频、动画等等(网页) html语言经过浏览器的编译显示成超文本 开发者使用5种浏览器…...

WPF学习(2) -- 样式基础
一、代码 <Window x:Class"学习.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expression/blend/2008&…...

独家揭秘!五大内网穿透神器,访问你的私有服务
本文精心筛选了五款炙手可热的内网穿透工具,它们各怀绝技,无论您是企业用户、独立开发者,还是技术探索者,这篇文章都物有所值,废话不多说,主角们即将上场。 目录 1. 巴比达 - 安全至上的企业护航者 2. 花…...

Ubuntu 编译和运行ZLMediaKit
摘要 本文描述了如何在Ubuntu上构建ZLMediaKIt项目源码,以及如何体验其WebRTC推流和播放功能。 实验环境 操作系统版本:Ubuntu 22.04.3 LTS gcc版本:11.4.0 g版本:11.4.0 依赖库安装 #让ZLMediaKit媒体服务器具备WebRTC流转发…...

基于JavaSpringBoot+Vue+uniapp微信小程序校园宿舍管理系统设计与实现
基于JavaSpringBootVueuniapp微信小程序实现校园宿舍管理系统设计与实现 目录 第一章 绪论 1.1 研究背景 1.2 研究现状 1.3 研究内容 第二章 相关技术介绍 2.1 Java语言 2.2 HTML网页技术 2.3 MySQL数据库 2.4 Springboot 框架介绍 2.5 VueJS介绍 2.6 ElementUI介绍…...

Hive的基本操作(创建与修改)
必备知识 数据类型 基本类型 类型写法字符char, varchar, string✔整数tinyint, smallint, int✔, bigint✔小数float, double, numeric(m,n), decimal(m,n)✔布尔值boolean✔时间date✔, timestamp✔ 复杂类型(集合类型) 1、数组:array<T> 面向用户提供…...

Linux开发讲课37--- ARM的22个常用概念
1. ARM中一些常见英文缩写解释 MSB:最高有效位; LSB:最低有效位; AHB:先进的高性能总线; VPB:连接片内外设功能的VLSI外设总线; EMC:外部存储器…...

7-1、2、3 IPFS介绍使用及浏览器交互(react+区块链实战)
7-1、2、3 IPFS介绍使用及浏览器交互(react区块链实战) 7-1 ipfs介绍7-2 IPFS-desktop使用7-3 reactipfs-api浏览器和ipfs交互 7-1 ipfs介绍 IPFS区块链上的文件系统 https://ipfs.io/ 这个网站本身是需要科学上网的 Ipfs是点对点的分布式系统 无限…...

CentOS 7 中出现 cannot open Packages database in /var/lib/rpm 错误
转载自:https://www.jianshu.com/p/423306f43e72 # 进入 rpmdb 所在目录 [roothostbase ~]# cd /var/lib/rpm [roothostbase rpm]# ls Basenames __db.001 __db.003 Group Name Packages Requirename Sigmd5 Conflictname __db.002 Dirnames Ins…...

【java深入学习第6章】深入解析Spring事件监听机制
在Spring框架中,事件监听机制是一个强大且灵活的功能,允许我们在应用程序中发布和监听事件。这种机制可以帮助我们实现松耦合的设计,使得不同模块之间的通信更加灵活和可维护。本文将详细介绍Spring的事件监听机制,并通过代码示例…...

Flask与Celery实现Python调度服务
文章目录 Flask与Celery实现Python调度服务一、前言1.组件2.场景说明3.环境 二、安装依赖1.安装Anaconda3.安装redis2.安装依赖包 三、具体实现1.目录结构2.业务流程3.配置文件4.Celery程序5.Flask程序6.测试脚本7.程序启动1)Windows开发调试2)Linux服务…...

Eureka应用场景和优势
Eureka是一款由Netflix开源的服务注册与发现框架,在微服务架构中扮演着至关重要的角色。以下是Eureka的应用场景和优势: Eureka的应用场景 Eureka主要应用于微服务架构中,特别是在大型、复杂的分布式系统中,用于管理和发现服务。…...

prompt第三讲-PromptTemplate
文章目录 前提回顾PromptTemplateprompt 模板定义以f-string渲染格式以mustache渲染格式以jinja2渲染格式直接实例化PromptTemplatePromptTemplate核心变量 prompt value生成invokeformat_prompt(不建议使用)format(不建议使用) batchstreamainvoke PromptTemplate核心方法part…...

卷积神经网络图像识别车辆类型
卷积神经网络图像识别车辆类型 1、图像 自行车: 汽车: 摩托车: 2、数据集目录 3、流程 1、获取数据,把图像转成矩阵,并随机划分训练集、测试集 2、把标签转为数值,将标签向量转换为二值矩阵 3、图像数据归一化,0-1之间的值 4、构造卷积神经网络 5、设置图像输入…...

【接口设计】用 Swagger 实现接口文档
用 Swagger 实现接口文档 1.配置 Swagger1.1 添加 Swagger 依赖1.2 创建 Swagger 配置类 2.编写接口文档 在项目开发中,一般都是由前后端工程师共同定义接口,编写接口文档,之后大家根据这个接口文档进行开发、维护。为了便于编写和维护稳定&a…...

TensorFlow系列:第四讲:MobileNetV2实战
一. 加载数据集 编写工具类,实现数据集的加载 import keras""" 加载数据集工具类 """class DatasetLoader:def __init__(self, path_url, image_size(224, 224), batch_size32, class_modecategorical):self.path_url path_urlself…...

Redis+Caffeine 实现两级缓存实战
RedisCaffeine 实现两级缓存 背景 事情的开始是这样的,前段时间接了个需求,给公司的商城官网提供一个查询预计送达时间的接口。接口很简单,根据请求传的城市仓库发货时间查询快递的预计送达时间。因为商城下单就会调用这个接口ÿ…...

SpringBoot:SpringBoot中如何实现对Http接口进行监控
一、前言 Spring Boot Actuator是Spring Boot提供的一个模块,用于监控和管理Spring Boot应用程序的运行时信息。它提供了一组监控端点(endpoints),用于获取应用程序的健康状态、性能指标、配置信息等,并支持通过 HTTP …...

STM32-I2C硬件外设
本博文建议与我上一篇I2C 通信协议共同理解 合成一套关于I2C软硬件体系 STM32内部集成了硬件I2C收发电路,可以由硬件自动执行时钟生成、起始终止条件生成、应答位收发、数据收发等功能,减轻CPU的负担 特点: 多主机功能&#x…...

暑假第一次作业
第一步:给R1,R2,R3,R4配IP [R1-GigabitEthernet0/0/0]ip address 192.168.1.1 24 [R1-Serial4/0/0]ip address 15.0.0.1 24 [R2-GigabitEthernet0/0/0]ip address 192.168.2.1 24 [R2-Serial4/0/0]ip address 25.0.0.1 24 [R3-GigabitEthernet0/0/0]ip address 192.…...

【算法专题】快速排序
1. 颜色分类 75. 颜色分类 - 力扣(LeetCode) 依据题意,我们需要把只包含0、1、2的数组划分为三个部分,事实上,在我们前面学习过的【算法专题】双指针算法-CSDN博客中,有一道题叫做移动零,题目要…...

debian 12 PXE Server 批量部署系统
pxe server 前言 PXE(Preboot eXecution Environment,预启动执行环境)是一种网络启动协议,允许计算机通过网络启动而不是使用本地硬盘。PXE服务器是实现这一功能的服务器,它提供了启动镜像和引导加载程序,…...

【Pytorch】RNN for Image Classification
文章目录 1 RNN 的定义2 RNN 输入 input, h_03 RNN 输出 output, h_n4 多层5 小试牛刀 学习参考来自 pytorch中nn.RNN()总结RNN for Image Classification(RNN图片分类–MNIST数据集)pytorch使用-nn.RNNBuilding RNNs is Fun with PyTorch and Google Colab 1 RNN 的定义 nn.…...

基于Java的飞机大战游戏的设计与实现论文
点击下载源码 基于Java的飞机大战游戏的设计与实现 摘 要 现如今,随着智能手机的兴起与普及,加上4G(the 4th Generation mobile communication ,第四代移动通信技术)网络的深入,越来越多的IT行业开始向手机…...

初识影刀:EXCEL根据部门筛选低值易耗品
第一次知道这个办公自动化的软件还是在招聘网站上,了解之后发现对于办公中重复性的工作还是挺有帮助的,特别是那些操作非EXCEL的重复性工作,当然用在EXCEL上更加方便,有些操作比写VBA便捷。 下面就是一个了解基本操作后ÿ…...

nginx的四层负载均衡实战
目录 1 环境准备 1.1 mysql 部署 1.2 nginx 部署 1.3 关闭防火墙和selinux 2 nginx配置 2.1 修改nginx主配置文件 2.2 创建stream配置文件 2.3 重启nginx 3 测试四层代理是否轮循成功 3.1 远程链接通过代理服务器访问 3.2 动图演示 4 四层反向代理算法介绍 4.1 轮询࿰…...

中职网络安全B模块Cenots6.8数据库
任务环境说明: ✓ 服务器场景:CentOS6.8(开放链接) ✓ 用户名:root;密码:123456 进入虚拟机操作系统:CentOS 6.8,登陆数据库(用户名:root&#x…...

BGP笔记的基本概要
技术背景: 在只有IGP(诸如OSPF、IS-IS、RIP等协议,因为最初是被设计在一个单域中进行一个路由操纵,因此被统一称为Interior Gateway Protocol,内部网关协议)的时代,域间路由无法实现一个全局路由…...