当前位置: 首页 > news >正文

70. 爬楼梯【 力扣(LeetCode) 】

一、题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

二、测试用例

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1+ 12. 2

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1+ 1+ 12. 1+ 23. 2+ 1

二、解题思路

  1. 基本思路:记爬 2 个台阶的个数为 k ,该题目可以转化为计算 k = 0,1,2,…,的方案数,例如:k = 0,表示每次只爬一个台阶,方案数为 C n − k k = C n 0 = 1 C_{n-k}^k=C_n^0=1 Cnkk=Cn0=1 ;k = 1 ,表示有一次是爬两个台阶,其他都是爬一个台阶,方案数就是 C n − k k = C n − 1 1 = n − 1 C_{n-k}^k=C_{n-1}^1=n-1 Cnkk=Cn11=n1 ,依次类推,总方案数就是 ∑ k = 0 n 2 C n − k k \sum_{k=0}^{\frac n2}C_{n-k}^k k=02nCnkk
  2. 具体思路:
    • 暴力解:写一个函数计算 C n k = n ( n − 1 ) ⋯ ( n − k + 1 ) k ! C_n^k=\frac{n(n-1)\cdots(n-k+1)}{k!} Cnk=k!n(n1)(nk+1)
    • 动态规划:计算 C n k C_n^k Cnk 表,其中 C n k = C n − 1 k − 1 + c n − 1 k C_n^k=C_{n-1}^{k-1}+c_{n-1}^k Cnk=Cn1k1+cn1k

三、参考代码

3.1 暴力解

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)

数据可能会溢出

// 计算cnk,k 表示爬 2 个楼梯的个数,n 表示楼梯总数 - k
int c(int k,int n){long long int a=1,b=1;for(int i=0;i<k;i++){a*=n-i;b*=k-i;}return a/b;
}int climbStairs(int n) {int sum=0;for(int i=0;2*i<=n;i++){sum+=c(i,n-i);}return sum;
}

3.2 动态规划

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( 1 ) O(1) O(1)

const static int max=45;
long c[max+1][max+1];
// dp方法,核心是 c[n][k]=c[n-1][k-1]+c[n-1][k]
void compute_c(){for(int i=0;i<=max;i++){  c[i][0]=c[i][i]=1;}for(int n=1;n<=max;n++){for(int k=1;k<n;k++){c[n][k]=c[n-1][k-1]+c[n-1][k];}}
}
int climbStairs(int n) {int sum=0;compute_c();for(int i=0;2*i<=n;i++){sum+=c[n-i][i];}return sum;
}

相关文章:

70. 爬楼梯【 力扣(LeetCode) 】

一、题目描述 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢&#xff1f; 二、测试用例 示例 1&#xff1a; 输入&#xff1a;n 2 输出&#xff1a;2 解释&#xff1a;有两种方法可以爬到楼顶。 1. 1 阶…...

R语言优雅的把数据基线表(表一)导出到word

基线表&#xff08;Baseline Table&#xff09;是医学研究中常用的一种数据表格&#xff0c;用于在研究开始时呈现参与者的初始特征和状态。这些特征通常包括人口统计学数据、健康状况和疾病史、临床指标、实验室检测、生活方式、社会经济等。 本人在既往文章《scitb包1.6版本发…...

XMl基本操作

引言 使⽤Mybatis的注解⽅式&#xff0c;主要是来完成⼀些简单的增删改查功能. 如果需要实现复杂的SQL功能&#xff0c;建议使⽤XML来配置映射语句&#xff0c;也就是将SQL语句写在XML配置⽂件中. 之前&#xff0c;我们学习了&#xff0c;用注解的方式来实现MyBatis 接下来我们…...

Linux——Shell脚本和Nginx反向代理服务器

1. Linux中的shell脚本【了解】 1.1 什么是shell Shell是一个用C语言编写的程序&#xff0c;它是用户使用Linux的桥梁 Shell 既是一种命令语言&#xff0c;有是一种程序设计语言 Shell是指一种应用程序&#xff0c;这个应用程序提供了一个界面&#xff0c;用户通过这个界面访问…...

pyspark使用 graphframes创建和查询图的方法

1、安装graphframes的步骤 1.1 查看 spark 和 scala版本 在终端输入&#xff1a; spark-shell --version 查看spark 和scala版本 1.2 在maven库中下载对应版本的graphframes https://mvnrepository.com/artifact/graphframes/graphframes 我这里需要的是spark 2.4 scala 2.…...

【web】-flask-简单的计算题(不简单)

打开页面是这样的 初步思路&#xff0c;打开F12&#xff0c;查看头&#xff0c;都发现了这个表达式的base64加密字符串。编写脚本提交答案&#xff0c;发现不对&#xff1b; 无奈点开source发现源代码&#xff0c;是flask,初始化表达式&#xff0c;获取提交的表达式&#xff0…...

Apache Sqoop

Apache Sqoop是一个开源工具&#xff0c;用于在Apache Hadoop和关系型数据库&#xff08;如MySQL、Oracle、PostgreSQL等&#xff09;之间进行数据的批量传输。其主要功能包括&#xff1a; 1. 数据导入&#xff1a;从关系型数据库&#xff08;如MySQL、Oracle等&#xff09;中将…...

【Python】TensorFlow介绍与实战

TensorFlow介绍与使用 1. 前言 在人工智能领域的快速发展中&#xff0c;深度学习框架的选择至关重要。TensorFlow 以其灵活性和强大的社区支持&#xff0c;成为了许多研究者和开发者的首选。本文将进一步扩展对 TensorFlow 的介绍&#xff0c;包括其优势、应用场景以及在最新…...

第100+16步 ChatGPT学习:R实现Xgboost分类

基于R 4.2.2版本演示 一、写在前面 有不少大佬问做机器学习分类能不能用R语言&#xff0c;不想学Python咯。 答曰&#xff1a;可&#xff01;用GPT或者Kimi转一下就得了呗。 加上最近也没啥内容写了&#xff0c;就帮各位搬运一下吧。 二、R代码实现Xgboost分类 &#xff08…...

【操作系统】定时器(Timer)的实现

这里写目录标题 定时器一、定时器是什么二、标准库中的定时器三、实现定时器 定时器 一、定时器是什么 定时器也是软件开发中的⼀个重要组件.类似于⼀个"闹钟".达到⼀个设定的时间之后,就执行某个指定 好的代码. 定时器是⼀种实际开发中⾮常常用的组件. ⽐如⽹络通…...

鸿蒙Navigation路由能力汇总

基本使用步骤&#xff1a; 1、新增配置文件router_map&#xff1a; 2、在moudle.json5中添加刚才新增的router_map配置&#xff1a; 3、使用方法&#xff1a; 属性汇总&#xff1a; https://developer.huawei.com/consumer/cn/doc/harmonyos-references/ts-basic-compone…...

​1:1公有云能力整体输出,腾讯云“七剑”下云端

【全球云观察 &#xff5c; 科技热点关注】 曾几何时&#xff0c;云计算技术的兴起&#xff0c;为千行万业的数字化创新带来了诸多新机遇&#xff0c;同时也催生了新产业新业态新模式&#xff0c;激发出高质量发展的科技新动能。很显然&#xff0c;如今的云创新已成为高质量发…...

【iOS】APP仿写——网易云音乐

网易云音乐 启动页发现定时器控制轮播图UIButtonConfiguration 发现换头像 我的总结 启动页 这里我的启动页是使用Xcode自带的启动功能&#xff0c;将图片放置在LaunchScreen中即可。这里也可以通过定时器控制&#xff0c;来实现启动的效果 效果图&#xff1a; 这里放一篇大…...

react 快速入门思维导图

在掌握了react中一下的几个步骤和语法&#xff0c;基本上就可以熟练的使用react了。 1、组件的使用。react创建组件主要是类组件和函数式组件&#xff0c;类组件有生命周期&#xff0c;而函数式组件没有。 2、jsx语法。react主要使用jsx语法&#xff0c;需要使用babel和webpa…...

微软研究人员为电子表格应用开发了专用人工智能LLM

微软的 Copilot 生成式人工智能助手现已成为该公司许多软件应用程序的一部分。其中包括 Excel 电子表格应用程序&#xff0c;用户可以在其中输入文本提示来帮助处理某些选项。微软的一组研究人员一直在研究一种新的人工智能大型语言模型&#xff0c;这种模型是专门为 Excel、Go…...

[算法题]两个链表的第一个公共结点

题目链接: 两个链表的第一个公共结点 图示: 两个链表如果长度一致, 那么两人同时一人走一步, 如果存在公共结点, 迟早会相遇, 但是如果长度不一致单存在公共结点, 两人同时一人走一步不会相遇, 此时定义两个变量, node1 和 node2, 这两个变量分别从 x1 和 x2 开始走, 当其走完…...

MySQL事务管理(上)

目录 前言 CURD不加控制&#xff0c;会有什么问题&#xff1f; CURD满足什么属性&#xff0c;能解决上述问题&#xff1f; 事务 什么是事务&#xff1f; 为什么会出现事务 事务的版本支持 事务提交方式 查看事务提交方式 改变 MySQL 的自动提交模式: 事务常见操作方式 前…...

HTML2048小游戏

源代码在效果图后面 效果图 源代码 <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>2048 Game&l…...

为 android编译 luajit库、 交叉编译

时间&#xff1a;20200719 本机环境&#xff1a;iMac2017 macOS11.4 参考: 官方的文档&#xff1a;Use the NDK with other build systems 写在前边&#xff1a;交叉编译跟普通编译类似&#xff0c;无非是利用特殊的编译器、链接器生成动态或静态库; make 本质上是按照 Make…...

【音视频】音频重采样

文章目录 前言音频重采样的基本概念音频重采样的原因1. 设备兼容性2. 文件大小和带宽3. 音质优化4. 标准化和规范5. 多媒体同步6. 降低处理负载重采样的注意事项 总结 前言 音频重采样是指将音频文件的采样率转换成另一种采样率的过程。这在音频处理和传输中是一个常见且重要的…...

卷积神经网络学习问题总结

问题一&#xff1a; 深度学习中的损失函数和应用场景 回归任务&#xff1a; 均方误差函数&#xff08;MSE&#xff09;适用于回归任务&#xff0c;如预测房价、预测股票价格等。 import torch.nn as nn loss_fn nn.MSELoss() 分类任务&#xff1a; 交叉熵损失函数&…...

嵌入式面试总结

C语言中struct和union的区别 struct和union都是常见的复合结构。 结构体和联合体虽然都是由多个不同的数据类型成员组成的&#xff0c;但不同之处在于联合体中所有成员共用一块地址空间&#xff0c;即联合体只存放了一个被选中的成员&#xff0c;结构体中所有成员占用空间是累…...

超简单安装指定版本的clickhouse

超简单安装指定版本的clickhouse 命令执行shell脚本 idea连接 命令执行 参考官网 # 下载脚本 wget https://raw.githubusercontent.com/183461750/doc-record/d988dced891d70b23c153a3bbfecee67902a3757/middleware/data/clickhouse/clickhouse-install.sh # 执行安装脚本(中…...

FlowUs横向对比几款笔记应用的优势所在

FlowUs作为一个本土化的生产力工具&#xff0c;在中国市场的环境下相对于Notion有其独特的优势&#xff0c;尤其是在稳定性和模板适应性方面。 尽管Notion在笔记和生产力工具领域享有极高的声誉&#xff0c;拥有着诸多创新功能和强大的生态系统&#xff0c;但它并不一定适合每…...

收银系统源码-千呼新零售收银视频介绍

千呼新零售2.0系统是零售行业连锁店一体化收银系统&#xff0c;包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体&#xff0c;线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货、宠物等连锁店使用。 详细介绍请…...

从Catalog说到拜义父-《分析模式》漫谈11

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 “Analysis Patterns”的Preface&#xff08;前言&#xff09;有这么一句&#xff1a; This book is thus a catalog, rather than a book to be read from cover to cover. 2004&am…...

Qt判定鼠标是否在该多边形的线条上

要判断鼠标是否在由QPainterPath或一系列QPointF点定义的多边形的线条上&#xff0c;你可以使用以下步骤&#xff1a; 获取鼠标当前位置&#xff1a;在鼠标事件中&#xff0c;使用QMouseEvent的pos()方法获取鼠标的当前位置。 检查点与线段的距离&#xff1a;遍历多边形的每条…...

【笔记:3D航路规划算法】一、随机搜索锚点(python实现,讲解思路)

目录 关键概念3D路径规划算法1. A*算法2. 快速随机锚点1. 初始化&#xff1a;2. 实例化搜索算法&#xff1a;3. 路径生成&#xff1a;4. 绘制图像&#xff1a; 3D路径规划是在三维空间中寻找从起点到终点的最短或最优路径的一种技术。它广泛应用于无人机导航、机器人运动规划、…...

ubuntu如何彻底卸载android studio?

最新版的ubuntu已经使用snap进行软件管理了&#xff0c;我用snap-store安装android studio以后&#xff0c;在安装plugin的时候强制退出后&#xff0c;直接再也进不去了&#xff0c;启动就报错。 先后进行了如下操作依然不行&#xff1a; 1 重装snap-store和android studio都…...

使用Windows Linux 子系统安装 Tensorflow,并使用GPU环境

在Microsoft Store商店安装Ubuntu 20.04 使用 nvidia-smi 命令查看GPU信息&#xff0c;查看支持的CUDA版本&#xff0c;这里最高支持11.7 安装cuda工具集 进入官网&#xff1a;CUDA Toolkit Archive | NVIDIA Developer&#xff0c;现在对应版本&#xff0c;点击 配置平台&…...

wordpress有置顶就置顶没有就其他/黄冈网站seo

无论什么平台&#xff0c;编写支持高并发性的网络服务器&#xff0c;瓶颈往往出在I/O上&#xff0c;目前最高效的是采用Asynchronous I/O模型&#xff0c;Linux平台提供了epoll&#xff0c;Windows平台提供了I/O Completion Port(IO完成端口&#xff0c;即IOCP)。 Windows自win…...

php cms网站建设/上海百度推广官方电话

9.29 点击模型开源工具及数据集 由于点击模型具有很强的实用性&#xff0c;因此很多搜索引擎公司都有部分模型的内部实现方案&#xff0c;而研究人员也针对点击模型开发了一系列的开源工具实现。 ●  ClickModelProject是一个基于 Python 的开源点击模型项目&#xff0c;本文中…...

如何用电子邮箱做网站/正规的网店培训机构有哪些

以下内容有待细化&#xff0c;并用于考察员工的水平&#xff01; 从低的往高级的说。 初级 1.掌握java语法 oopio网络 2.基本的数据结构 3.基本的算法-例如排序&#xff0c;合并 4.基本的几个javaee框架 springmvcspringboot mybatis 5.知道如何使用tomcat等容器 6.会使用linux…...

做擦边球网站赚钱么/在线h5免费制作网站

计算机应用基础(Windows XPOffice 2003)、素材和习题答案-王向慧 计算机应用基础 (447页)本资源提供全文预览&#xff0c;点击全文预览即可全文预览,如果喜欢文档就下载吧&#xff0c;查找使用更方便哦&#xff01;9.90 积分第1章 上页 下页 目录 退出 目 目 录 录 第1章 计算机…...

wordpress页眉页脚插件/手机优化大师下载

查看scipy函数说明 from scipy.optimize import fsolvefrom scipy import *>>> info(fsolve) permutation matrix:置换矩阵&#xff1a;矩阵的每一行&#xff0c;每一列只有一个1元素&#xff0c;其他为0 元素 R matrix:转载于:https://www.cnblogs.com/finallyliuyu/…...

赣县区疫情最新情况今天/seo自动推广工具

导航菜单函数wp_nav_menu()进行详细的说明。 1、wp_nav_menu()函数介绍&#xff1a; worpdress发展到3.0以后增加了一个自定义菜单函数wp_nav_menu()&#xff0c;使得wordpress能够轻松的制作自己的导航菜单。 2、如何调用导航菜单&#xff08;自定义菜单&#xff09;&#xff…...