当前位置: 首页 > news >正文

数学分析课程笔记(张平):函数

01 函数

\quad 作为数学分析的第一节课,首先深入了解一下函数。

\quad 翻看一些教材可以发现,有些教材将“函数”与“映射”区分为两个概念,有些教材(尤其是前苏联时期的一些教材)则将其视为一个概念。实际上,“函数”也的确就是“映射”。

\quad 在高中阶段,我们认为函数的概念为:若给定集合 X,YX,YX,Y,存在一个对应法则 fff,使得

∀x∈X,∃!y∈Ys.t.y=f(x),\forall ~ x \in X,~\exists ~ !y \in Y \quad s.t.\quad y=f(x),  xX,  !yYs.t.y=f(x),
则称 f:X⟶Yf:X\longrightarrow Yf:XY函数。简单来说,函数可以是“一对一”,亦可以是“多对一”,但绝不可以是“一对多”!

\quad 步入分析学的领域后,函数的概念需要进行拓广!

函数:若给定集合 X,YX,YX,Y,存在一个对应法则 fff,使得

∀x∈X,∃y∈Ys.t.y=f(x),\forall ~ x \in X,~\exists ~ y \in Y \quad s.t.\quad y=f(x),  xX,  yYs.t.y=f(x),
则称 f:X⟶Yf:X\longrightarrow Yf:XY函数。进行拓广后,函数也可以是“一对多”了。

\quad 复变函数就是典型的“一对多”函数。

\quadf:X⟶Yf:X\longrightarrow Yf:XY 为函数,即:
X→fY∀x∈X↦y∈Y,y=f(x)\begin{aligned} X &\xrightarrow{f}Y \\ \forall x\in X &\mapsto y\in Y,y=f\left( x \right) \end{aligned} XxXfYyY,y=f(x)
则:

f(X):={y∈Y∣∃x((x∈X)∧(y=f(x)))}f(X):=\{y \in Y\mid \exists ~ x ((x \in X)\land(y=f(x)))\} f(X):={yY x((xX)(y=f(x)))}

称为函数的 值域

\quad 其中,XXX 称为 定义域YYY 称为 到达域


\quad 显然,定义一个函数(或者说是映射),需要知晓:

  • 定义域 XXX
  • 对应法则 fff
  • 到达域 YYY.

\quad 微积分主要研究的是 可微函数,实变函数主要研究 可测函数。通常我们研究的函数形式为 f:X⟶Yf:X \longrightarrow Yf:XYX,Y⊂RnX,Y \subset \mathbb{R}^{n}X,YRn. 而研究这种函数,首先就要先认识 Rn\mathbb{R}^{n}Rn 或者 R\mathbb{R}R.

\quad R\mathbb{R}R 是什么东西?中学我们便接触它了,它就是 实数集。但实际上,正如我们会使用计算机,但不清楚其构造原理一般,我们缺乏对实数集 R\mathbb{R}R 的真正认识!


参考

  1. 张平. 数学分析课程.

相关文章:

数学分析课程笔记(张平):函数

01 函数 \quad作为数学分析的第一节课,首先深入了解一下函数。 \quad翻看一些教材可以发现,有些教材将“函数”与“映射”区分为两个概念,有些教材(尤其是前苏联时期的一些教材)则将其视为一个概念。实际上&#xff0c…...

spring事务 只读此文

文章目录一. 事务概述1.1. MySQL 数据库事务1.2 spring的事务支持:1.2.1 编程式事务:1.2.2 声明式事务1.2.3 事务传播行为:1.2.4 事务隔离级别1.2.5 事务的超时时间1.2.6 事务的只读属性1.2.7 事务的回滚策略二. spring事务(注解 Transaction…...

真实的软件测试日常工作是咋样的?

最近很多粉丝问我,小姐姐,现在大环境不景气,传统行业不好做了,想转行软件测试,想知道软件测试日常工作是咋样的?平常的工作内容是什么? 别急,今天跟大家细细说一下一个合格的软件测…...

【UML】软件需求说明书

目录🦁 故事的开端一. 🦁 引言1.1编写目的1.2背景1.3定义1.4参考资料二. 🦁 任务概述2.1目标2.2用户的特点2.3假定和约束三. 🦁 需求规定3.1 功能性需求3.1.1系统用例图3.1.2用户登录用例3.1.3学员注册用例3.1.4 学员修改个人信息…...

面试官:html里面哪个元素可以让文字换行展示

在HTML中&#xff0c;可以使用 <br> 元素来强制换行&#xff0c;也可以使用CSS的 word-break 或 white-space 属性来实现自动换行。以下是这些方法的具体说明&#xff1a; 1.使用 <br> 元素 <br> 元素可以在文本中插入一个换行符&#xff0c;使文本从该位置…...

XGBoost和LightGBM时间序列预测对比

XGBoost和LightGBM都是目前非常流行的基于决策树的机器学习模型&#xff0c;它们都有着高效的性能表现&#xff0c;但是在某些情况下&#xff0c;它们也有着不同的特点。 XGBoost和LightGBM简单对比 训练速度 LightGBM相较于xgboost在训练速度方面有明显的优势。这是因为Ligh…...

JVM高频面试题

1、项目中什么情况下会内存溢出&#xff0c;怎么解决&#xff1f; &#xff08;1&#xff09;误用固定大小线程池导致内存溢出 Excutors.newFixedThreadPool内最大线程数是21亿(2) 误用带缓冲线程池导致内存溢出最大线程数是21亿(3)一次查询太多的数据&#xff0c;导致内存占用…...

Windows环境下实现设计模式——状态模式(JAVA版)

我是荔园微风&#xff0c;作为一名在IT界整整25年的老兵&#xff0c;今天总结一下Windows环境下如何编程实现状态模式&#xff08;设计模式&#xff09;。不知道大家有没有这样的感觉&#xff0c;看了一大堆编程和设计模式的书&#xff0c;却还是很难理解设计模式&#xff0c;无…...

【总结】多个条件排序(pii/struct/bool)

目录 pii struct bool pii 现在小龙同学要吃掉它们&#xff0c;已知他有n颗苹果&#xff0c;并且打算每天吃一个。 但是古人云&#xff0c;早上金苹果&#xff0c;晚上毒苹果。由此可见&#xff0c;早上吃苹果和晚上吃苹果的效果是不一样的。 已知小龙同学在第 i 天早上吃苹果能…...

基于stm32mp157 linux开发板ARM裸机开发教程Cortex-A7 开发环境搭建(连载中)

前言&#xff1a;目前针对ARM Cortex-A7裸机开发文档及视频进行了二次升级持续更新中&#xff0c;使其内容更加丰富&#xff0c;讲解更加细致&#xff0c;全文所使用的开发平台均为华清远见FS-MP1A开发板&#xff08;STM32MP157开发板&#xff09;针对对FS-MP1A开发板&#xff…...

最适合游戏开发的语言是什么?

建议初学者学习主流的开发技术 主流开发技术有大量成熟的教程、很多可以交流的学习者、及时的学习反馈等&#xff1b;技术的内里基本都是相同的&#xff0c;学习主流技术的经验、知识可以更好更快地疏通学习新知识和技术。 因此&#xff0c;对C#或者C二选一进行学习较好。 Un…...

C语言刷题(7)(字符串旋转问题)——“C”

各位CSDN的uu们你们好呀&#xff0c;今天&#xff0c;小雅兰的内容依旧是复习之前的知识点&#xff0c;那么&#xff0c;就是做一道小小的题目啦&#xff0c;下面&#xff0c;让我们进入C语言的世界吧 实现一个函数&#xff0c;可以左旋字符串中的k个字符。 例如&#xff1a; A…...

有趣且重要的JS知识合集(18)浏览器实现前端录音功能

1、主题描述 兼容多个浏览器下的前端录音功能&#xff0c;实现六大录音功能&#xff1a; 1、开始录音 2、暂停录音 3、继续录音 4、结束录音 5、播放录音 6、上传录音 2、示例功能 初始状态&#xff1a; 开始录音&#xff1a; 结束录音&#xff1a; 录音流程 &#xf…...

面试官:聊聊你知道的跨域解决方案

跨域是开发中经常会遇到的一个场景&#xff0c;也是面试中经常会讨论的一个问题。掌握常见的跨域解决方案及其背后的原理&#xff0c;不仅可以提高我们的开发效率&#xff0c;还能在面试中表现的更加游刃有余。 因此今天就来和大家从前端的角度来聊聊解决跨域常见的几种方式。…...

SpringCloud五大核心组件

Consul 等&#xff0c;提供了搭建分布式系统及微服务常用的工具&#xff0c;如配置管理、服务发现、断路器、智能路由、微代理、控制总线、一次性token、全局锁、选主、分布式会话和集群状态等&#xff0c;满足了构建微服务所需的所有解决方案。 服务发现——Netflix Eureka …...

Verilog HDL语言入门(二)

强烈建议用同步设计2.在设计时总是记住时序问题3.在一个设计开始就要考虑到地电平或高电平复位、同步或异步复位、上升沿或下降沿触发等问题&#xff0c;在所有模块中都要遵守它4.在不同的情况下用if和case&#xff0c;最好少用if的多层嵌套&#xff08;1层或2层比较合适&#…...

Simpleperf详细使用

一、Simpleperf介绍 Simpleperf是一个强大的命令行工具&#xff0c;它包含在NDK中&#xff0c;可以帮助我们分析应用的CPU性能。Simpleperf可以帮助我们找到应用的热点&#xff0c;而热点往往与性能问题相关&#xff0c;这样我们就可以分析修复热点源。 如果您更喜欢使用命令…...

【算法基础】二分图(染色法 匈牙利算法)

一、二分图 1. 染色法 一个图是二分图,当且仅当,图中不含奇数环。在判别一个图是否为二分图⑩,其实相当于染色问题,每条边的两个点必须是不同的颜色,一共有两种颜色,如果染色过程中出现矛盾,则说明不是二分图。 for i = 1 to n:if i 未染色DFS(i, 1); //将i号点染色未…...

Caputo 分数阶微分方程-慢扩散方程初边值问题基于L1 逼近的空间二阶方法及其Matlab程序实现

2.3.3 Caputo 分数阶一维问题基于 L1 逼近的空间二阶方法 考虑如下时间分数阶慢扩散方程初边值问题 { 0 C D t α u ( x , t ) = u...

I.MX6ULL_Linux_驱动篇(29) GPIO驱动

Linux 下的任何外设驱动&#xff0c;最终都是要配置相应的硬件寄存器。所以本篇的 LED 灯驱动最终也是对 I.MX6ULL 的 IO 口进行配置&#xff0c;与裸机实验不同的是&#xff0c;在 Linux 下编写驱动要符合 Linux 的驱动框架。I.MX6U-ALPHA 开发板上的 LED 连接到 I.MX6ULL 的 …...

jupyter的安装和使用

目录 ❤ Jupyter Notebook是什么&#xff1f; notebook jupyter 简介 notebook jupyter 组成 网页应用 文档 主要特点 ❤ jupyter notebook的安装 notebook jupyter 安装有两种途径 1.通过Anaconda进行安装 2.通过pip进行安装 启动jupyter notebook ❤ jupyter …...

Springboot新手开发 Cloud篇

前言&#xff1a; &#x1f44f;作者简介&#xff1a;我是笑霸final&#xff0c;一名热爱技术的在校学生。 &#x1f4dd;个人主页&#xff1a;个人主页1 || 笑霸final的主页2 &#x1f4d5;系列专栏&#xff1a;后端专栏 &#x1f4e7;如果文章知识点有错误的地方&#xff0c;…...

Linux:函数指针做函数参数

#include <stdio.h> #include <stdlib.h> //创建带有函数指针做参数的函数框架api //调用者要先实现回调函数 //调用者再去调用函数框架 //所谓的回调是指 调用者去调用一个带有函数指针做参数的函数框架&#xff0c;函数框架反过来要调用调用者提供的回调函数 …...

Vue3(递归组件) + 原生Table 实现树结构复杂表格

一、递归组件 什么是递归&#xff0c;Javascript中经常能接触到递归函数。也就是函数自己调用自己。那对于组件来说也是一样的逻辑。平时工作中见得最多应该就是菜单组件&#xff0c;大部分系统里面的都是递归组件。文章中我做了按需引入的配置&#xff0c;所以看不到我引用组…...

ArrayList底层源码解析

Java源码系列&#xff1a;下方连接 http://t.csdn.cn/Nwzed 文章目录前言一、**ArrayList底层结构和源码分析**无参构造调用创建ArrayList集合无参构造总结&#xff1a;发文3个工作日后 up 会把总结放入前言部分&#xff0c;但也诚邀读者总结&#xff0c;可放入评论区有参构造…...

python:DIY字符画的程序使用说明.doc

目录开发环境要求运行方法具体的操作步骤如下&#xff1a;代码示例源码及运行程序下载地址开发环境要求 本系统的软件开发及运行环境具体如下。 操作系统&#xff1a;Windows 7、Windows 10。 Python版本&#xff1a;Python 3.7.0。 开发工具&#xff1a;Python IDLE。 …...

【Python/Opencv】图像权重加法函数:cv2.addWeighted()详解

【Python/Opencv】图像权重加法函数&#xff1a;cv2.addWeighted()详解 文章目录【Python/Opencv】图像权重加法函数&#xff1a;cv2.addWeighted()详解1. 介绍2. API3. 代码示例与效果3.1 代码3.2 效果4. 参考1. 介绍 在OpenCV图像加法cv2.add函数详解详细介绍了图像的加法运…...

容器的老祖宗LXC和Docker的关系

一、什么是LXC&#xff1f; LXC&#xff08;Linux Container的缩写&#xff09;是一个基于Linux内核的容器虚拟化技术&#xff0c;它提供了一种轻量级、快速、简便的方式来创建和管理系统容器。与传统虚拟化技术不同&#xff0c;LXC并不会模拟硬件&#xff0c;而是利用Linux内…...

Webpack迁移Rspack速攻实战教程(前瞻版)

前言 rspack 即将开源&#xff0c;但社区中不乏有已经落地的 case &#xff0c;比如 rspack-migration-showcase 、 modern.js 等。 基于此&#xff0c;本文将介绍如何迁移一个近似于 CRA&#xff08; create-react-app &#xff09; 的项目到 rspack 。 在阅读本文前&#…...

一行代码“黑”掉任意网站

文章目录只需一行代码&#xff0c;轻轻一点就可以把任意网站变成暗黑模式。 首先我们先做一个实验&#xff0c;在任意网站中&#xff0c;打开浏览器开发者工具(F12)&#xff0c;在 C1onsole 控制台输入如下代码并回车&#xff1a; document.documentElement.style.filterinve…...

影视网站怎么做优化/新品牌推广策略

6.8 算法选择指导 关于在计算的过程中&#xff0c;如何选择合适的算法进行计算&#xff0c;可以参考scikit learn官方给的指导意见&#xff1a;...

网站首页效果图怎么做/网页设计制作网站模板图片

哈哈&#xff0c;把GWIP搞定了&#xff0c;原来他们真的没有按照协议来做&#xff0c;RTP头里都是无用的垃圾数据&#xff0c;除了头两个字节的标识……BS一下他们&#xff0c;看来我也可以做网络语音聊天程序了&#xff1a;&#xff09; 转载于:https://www.cnblogs.com/AndyH…...

基本建设工程兵网站/关键词seo公司真实推荐

...

清新网站模板/关键词优化排名哪家好

前些日子写了个拦截器里面获取Spring对象的&#xff0c;写的个方法是需要 request的&#xff0c;今天需要搞个线程&#xff0c;而且获取不到 request了&#xff0c;再加上获取 request的方法也不通用&#xff0c;这里来写个通用的。 SpringContext 对象的获取方式有三种 1.从…...

江苏省建设工程网站/杭州seo公司服务

horseluke 2013/09/13 15:060x00 背景纵观账号互通发展史&#xff0c;可以发现OAuth比起其它协议&#xff08;如OpenID&#xff09;更流行的原因是&#xff0c;业务双方不仅要求账号本身的认证互通&#xff08;authentication&#xff1b;可理解为“我在双方的地盘姓甚名谁”&…...

网站快照明天更新是什么情况/郑州网站seo外包

关于SYS密码忘记&#xff0c;或者明明正确&#xff0c;却报密码不正确的解决方案参考文章&#xff1a; &#xff08;1&#xff09;关于SYS密码忘记&#xff0c;或者明明正确&#xff0c;却报密码不正确的解决方案 &#xff08;2&#xff09;https://www.cnblogs.com/yutianqi…...