当前位置: 首页 > news >正文

2. 卷积神经网络无法绕开的神——LeNet

卷积神经网络无法绕开的大神——LeNet

  • 1. 基本架构
  • 2. LeNet 5
  • 3. LeNet 5 代码

1. 基本架构

在这里插入图片描述

  • 特征抽取模块
  • 可学习的分类器模块

2. LeNet 5

在这里插入图片描述

  • LeNet 5: 5 表示的是5个核心层,2个卷积层,3个全连接层.
  • 核心权重层:卷积层、全连接层、循环层,Batchnorm / Dropout 这些都属于附属层。
  • Convolutions, 32×32 → 28×28:卷积过后,图像像素损失了4个,是因为 kernal_size是5×5. 那个年代是不补零的。
  • Subsampling: 亚采样,也叫池化层,池化一次,图像大小缩小一般,层数不变。
  • 卷积负责把图像层数变得越来越多,池化负责把图像变得越来越小。最后使用全连接,输出类别。

3. LeNet 5 代码

import torch
from torch import nnclass ConvBlock(nn.Module):"""一层卷积:- 卷积层- 批规范化层- 激活层"""def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):super().__init__()self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels,kernel_size=kernel_size, stride=stride,padding=padding)self.bn = nn.BatchNorm2d(num_features=out_channels)self.relu = nn.ReLU()def forward(self, x):x = self.conv(x)x = self.bn(x)x = self.relu(x)return xclass LeNet(nn.Module):def __init__(self):super().__init__()# 1, 特征抽取部分self.feature_extractor = nn.Sequential(# 卷积层1ConvBlock(in_channels=1, out_channels=6, kernel_size=5,stride=1,padding=0),# 亚采样(池化)nn.MaxPool2d(kernel_size=2, stride=2, padding=0),# 卷积层2ConvBlock(in_channels=6, out_channels=16, kernel_size=5,stride=1,padding=0),# 亚采样(池化)nn.MaxPool2d(kernel_size=2, stride=2, padding=0),)# 2, 分类self.classifier = nn.Sequential(nn.Flatten(),nn.Linear(in_features=400, out_features=120),nn.ReLU(),nn.Linear(in_features=120, out_features=84),nn.ReLU(),nn.Linear(in_features=84, out_features=10))def forward(self, x):# 1, 提取特征x = self.feature_extractor(x)# 2, 分类输出x = self.classifier(x)return xif __name__ == "__main__":model = LeNet()print(model)x = torch.randn(1, 1, 32, 32)y = model(x)print(y.shape)

相关文章:

2. 卷积神经网络无法绕开的神——LeNet

卷积神经网络无法绕开的大神——LeNet 1. 基本架构2. LeNet 53. LeNet 5 代码 1. 基本架构 特征抽取模块可学习的分类器模块 2. LeNet 5 LeNet 5: 5 表示的是5个核心层,2个卷积层,3个全连接层.核心权重层:卷积层、全连接层、循环层&#xff…...

【区块链】JavaScript连接web3钱包,实现测试网络中的 Sepolia ETH余额查询、转账功能

审核看清楚了 ! 这是以太坊测试网络!用于学习的测试网络!!! 有关web3 和区块链的内容为什么要给我审核不通过? 别人凭什么可以发! 目标成果: 实现功能分析: 显示账户信…...

关于珞石机器人二次开发SDK的posture函数的算法RX RY RZ纠正 C#

在珞石SDK二次开发的函数钟,获取当前机器人位姿的函数posture函数在输出时会发现数据不正确,与示教器数据不一致。 其中第一个数据正确 第二三各数据为相反 第四五六各数据为弧度制 转换方法为(弧度/PI)*180度 然后发现第四个数据还要加上180度 第五…...

【Three.js基础学习】17.imported-models

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 前言 课程回顾: 如何在three.js 中引入不同的模型? 1. 格式 (不同的格式) https://en.wikipedia.org/wiki/List_of_file_form…...

Spring Bean - xml 配置文件创建对象

类型&#xff1a; 1、值类型 2、null &#xff08;标签&#xff09; 3、特殊符号 &#xff08;< -> < &#xff09; 4、CDATA <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/bea…...

uniapp map组件自定义markers标记点

需求是根据后端返回数据在地图上显示标记点&#xff0c;并且根据数据状态控制标记点颜色&#xff0c;标记点背景通过两张图片实现控制 <mapstyle"width: 100vw; height: 100vh;":markers"markers":longitude"locaInfo.longitude":latitude&…...

Windows:批处理脚本学习

目录 一、第一个批处理文件 1. &&和 | | 2. | 和 & 二、变量 1.传参变量%name 2.初始化变量set命令 3.变量的使用 4.局部变量与全局变量 5.使用环境变量 6.扩充变量语法 三、注释REM和 &#xff1a;&#xff1a; 四&#xff1a;函数 1.定义函数 2.…...

Dav_笔记10:Using SQL Plan Management之4

SQL管理库 SQL管理库(SMB)是驻留在SYSAUX表空间中的数据字典的一部分。它存储语句日志,计划历史记录,SQL计划基准和SQL配置文件。为了允许每周清除未使用的计划和日志,SMB使用自动空间管理。 您还可以手动将计划添加到SMB以获取一组SQL语句。从Oracle Database 11g之前的…...

通过json传递请求参数,如何处理动态参数和接口依赖

嗨&#xff0c;大家好&#xff0c;我是兰若姐姐&#xff0c;今天给大家讲一下如何通过json传递请求参数&#xff0c;如何处理动态参数和接口依赖 1. 使用配置文件和模板 在 test_data.json 中&#xff0c;你可以使用一些占位符或模板变量&#xff0c;然后在运行测试之前&…...

[240727] Qt Creator 14 发布 | AMD 推迟 Ryzen 9000芯片发布

目录 Qt Creator 14 发布Qt Creator 14 版本发布&#xff0c;带来一系列新功能和改进终端用户可通过命令行方式查看此新闻终端用户可通过命令行方式安装软件&#xff1a; AMD 推迟 Ryzen 9000芯片发布 Qt Creator 14 发布 Qt Creator 14 版本发布&#xff0c;带来一系列新功能…...

PLSQL Developer工具查询数据,报错(动态性能表不可访问)

解决的问题&#xff1a; 解决方案&#xff1a; 在配置-首选项-选项&#xff0c;取消勾选“自动统计”&#xff0c;保存之后即可查询数据...

基于 HTML+ECharts 实现智慧交通数据可视化大屏(含源码)

构建智慧交通数据可视化大屏&#xff1a;基于 HTML 和 ECharts 的实现 随着城市化进程的加快&#xff0c;智慧交通系统已成为提升城市管理效率和居民生活质量的关键。通过数据可视化&#xff0c;交通管理部门可以实时监控交通流量、事故发生率、道路状况等关键指标&#xff0c;…...

探索 IT 领域的新宠儿:量子计算

目录 引言&#xff1a;从经典到量子的飞跃 量子计算的基本概念 量子计算的独特优势 量子计算的深度剖析 量子计算的最新进展 量子计算的行业应用前景 面临的挑战与未来展望 结语&#xff1a;迎接量子计算的新时代 引言&#xff1a;从经典到量子的飞跃 在信息技术飞速发…...

TSPNet代码分析

论文《Realigning Confidence with Temporal Saliency Information for Point-Level Weakly-Supervised Temporal Action Localization》的official code分析 论文解读 代码分析 先看看训练过程,执行main if __name__ == __main__:exp = Exp()if exp.config.mode == eval:…...

Ubuntu上安装anaconda创建虚拟环境(各种踩坑版)

之前都是在Windows桌面版进行深度学习的环境部署及训练&#xff0c;今天尝试了一下在Ubuntu上进行环境部署&#xff0c;踩了不少坑&#xff0c;提供一些解决办法给大家避雷。 目录 一、下载和安装anaconda 1. 下载 2. 安装 二、创建虚拟环境 一、下载和安装anaconda 1. …...

DC-5靶机通关

今天我们来学习DC-5靶机&#xff01;&#xff01;&#xff01; 1.实验环境 攻击机&#xff1a;kali2023.2 靶机&#xff1a;DC-5 2.1扫描网段 2.2扫描端口 这里后面这俩端口有点似曾相识啊&#xff0c;在dc3里面好像见过&#xff0c;那咱们给这两个端口来个更详细的扫描&…...

AI学习记录 -使用react开发一个网页,对接chatgpt接口,附带一些英语的学习prompt

实现了如下功能&#xff08;使用react实现&#xff0c;原创&#xff09; 实现功能&#xff1a; 1、对接gpt35模型问答&#xff0c;并实现了流式传输&#xff08;在java端&#xff09; 2、在实际使用中&#xff0c;我们的问答历史会经常分享给他人&#xff0c;所以下图的 copy …...

MongoDB多数据源配置与切换

在MongoDB中配置和使用多数据源主要涉及以下几个步骤&#xff1a; 定义多个数据源的配置&#xff1a; 在应用程序的配置文件中&#xff0c;定义多个MongoDB的数据源&#xff0c;例如在Spring Boot中可以通过application.yml或application.properties文件进行配置。 创建多个Mo…...

Mongodb入门介绍

文章目录 1、Mongodb&#xff1a;NoSQL数据库&#xff0c;分布式的文档型数据库2、适合场景&#xff1a;3、不适合场景&#xff1a;4、概念5、总结 1、Mongodb&#xff1a;NoSQL数据库&#xff0c;分布式的文档型数据库 2、适合场景&#xff1a; 1、web网站数据存储&#xff…...

docker前端部署

挂载&#xff0c;把自己的目录位置&#xff0c;挂载到容器内的HTML...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...