当前位置: 首页 > news >正文

在invidia jetpack4.5.1上运行c++版yolov8(tensorRT)

心路历程(可略过)

为了能在arm64上跑通yolov8,我试过很多很多代码,太多对库版本的要求太高了;
比如说有一个是需要依赖onnx库的,(https://github.com/UNeedCryDear/yolov8-opencv-onnxruntime-cpp)
运行成功了报错error: IOrtSessionOptionsAppendExecutionProvider CUDA’ was not declare
d in this scope,一查是不仅需要onnx库,还需要gpu版本的onnx库
因为这个函数是onnxgpu里才有的函数OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(_OrtSessionOptions, cudaID);
而onnxruntime的官方下载地址(https://github.com/microsoft/onnxruntime/releases/)
在这里插入图片描述
只有这个版本可以用,但是这个并不是onnxruntime的gpu版本,我在论坛上上搜到onnx官方是不提供nvidia gpu的库的,所以需要自己编译。
我就尝试自己编译,结果有各种各样的版本不匹配的问题,先是说opencv版本低,然后又是杂七杂八的。我都按照要求升级了,最后来一个gcc版本也得升级,那我真是得放弃了,因为当前硬件得这些基础环境是不能改变的,我只能放弃上面这个关于onnxruntime的yolov8代码;(所以得到一个经验,这种大型的库最好直接下载官方现成的,自己编译真的非常麻烦,不到万不得已的时候建议直接换代码,这种版本匹配与编译的问题是最难解决的)

好在很幸运,找到了一个轻量级的能在nvidia arm64硬件上成功运行的轻量级c++yolov8代码,非常简洁好用,不需要依赖杂七杂八的库,可以说直接用jetpack默认的库就能可以简单编译而成,能找到非常不容易,下面是全部代码。

  • jetpack版本
    在这里插入图片描述

  • 文件结构
    在这里插入图片描述

  • main.cpp

//
// Created by  triple-Mu     on 24-1-2023.
// Modified by Q-engineering on  6-3-2024
//#include "chrono"
#include "opencv2/opencv.hpp"
#include "yolov8.hpp"using namespace std;
using namespace cv;//#define VIDEOcv::Size       im_size(640, 640);
const int      num_labels  = 80;
const int      topk        = 100;
const float    score_thres = 0.25f;
const float    iou_thres   = 0.65f;int main(int argc, char** argv)
{float    f;float    FPS[16];int      i, Fcnt=0;cv::Mat  image;std::chrono::steady_clock::time_point Tbegin, Tend;if (argc < 3) {fprintf(stderr,"Usage: ./YoloV8_RT [model_trt.engine] [image or video path] \n");return -1;}const string engine_file_path = argv[1];const string imagepath = argv[2];for(i=0;i<16;i++) FPS[i]=0.0;cout << "Set CUDA...\n" << endl;//wjp// cudaSetDevice(0);cudaStream_t(0);cout << "Loading TensorRT model " << engine_file_path << endl;cout << "\nWait a second...." << std::flush;auto yolov8 = new YOLOv8(engine_file_path);cout << "\rLoading the pipe... " << string(10, ' ')<< "\n\r" ;cout << endl;yolov8->MakePipe(true);#ifdef VIDEOVideoCapture cap(imagepath);if (!cap.isOpened()) {cerr << "ERROR: Unable to open the stream " << imagepath << endl;return 0;}
#endif // VIDEOwhile(1){
#ifdef VIDEOcap >> image;if (image.empty()) {cerr << "ERROR: Unable to grab from the camera" << endl;break;}
#elseimage = cv::imread(imagepath);
#endifyolov8->CopyFromMat(image, im_size);std::vector<Object> objs;Tbegin = std::chrono::steady_clock::now();yolov8->Infer();Tend = std::chrono::steady_clock::now();yolov8->PostProcess(objs, score_thres, iou_thres, topk, num_labels);yolov8->DrawObjects(image, objs);//calculate frame ratef = std::chrono::duration_cast <std::chrono::milliseconds> (Tend - Tbegin).count();cout << "Infer time " << f << endl;if(f>0.0) FPS[((Fcnt++)&0x0F)]=1000.0/f;for(f=0.0, i=0;i<16;i++){ f+=FPS[i]; }putText(image, cv::format("FPS %0.2f", f/16),cv::Point(10,20),cv::FONT_HERSHEY_SIMPLEX,0.6, cv::Scalar(0, 0, 255));//show output// imshow("Jetson Orin Nano- 8 Mb RAM", image);// char esc = cv::waitKey(1);// if(esc == 27) break;imwrite("./out.jpg", image);return 0;}cv::destroyAllWindows();delete yolov8;return 0;
}
  • yolov8.cpp
//
// Created by  triple-Mu     on 24-1-2023.
// Modified by Q-engineering on  6-3-2024
//#include "yolov8.hpp"
#include <cuda_runtime_api.h>
#include <cuda.h>//----------------------------------------------------------------------------------------
//using namespace det;
//----------------------------------------------------------------------------------------
const char* class_names[] = {"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light","fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow","elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee","skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard","tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple","sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch","potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone","microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear","hair drier", "toothbrush"
};
//----------------------------------------------------------------------------------------
YOLOv8::YOLOv8(const std::string& engine_file_path)
{std::ifstream file(engine_file_path, std::ios::binary);assert(file.good());file.seekg(0, std::ios::end);auto size = file.tellg();file.seekg(0, std::ios::beg);char* trtModelStream = new char[size];assert(trtModelStream);file.read(trtModelStream, size);file.close();initLibNvInferPlugins(&this->gLogger, "");this->runtime = nvinfer1::createInferRuntime(this->gLogger);assert(this->runtime != nullptr);this->engine = this->runtime->deserializeCudaEngine(trtModelStream, size);assert(this->engine != nullptr);delete[] trtModelStream;this->context = this->engine->createExecutionContext();assert(this->context != nullptr);cudaStreamCreate(&this->stream);this->num_bindings = this->engine->getNbBindings();for (int i = 0; i < this->num_bindings; ++i) {Binding            binding;nvinfer1::Dims     dims;nvinfer1::DataType dtype = this->engine->getBindingDataType(i);std::string        name  = this->engine->getBindingName(i);binding.name             = name;binding.dsize            = type_to_size(dtype);bool IsInput = engine->bindingIsInput(i);if (IsInput) {this->num_inputs += 1;dims         = this->engine->getProfileDimensions(i, 0, nvinfer1::OptProfileSelector::kMAX);binding.size = get_size_by_dims(dims);binding.dims = dims;this->input_bindings.push_back(binding);// set max opt shapethis->context->setBindingDimensions(i, dims);}else {dims         = this->context->getBindingDimensions(i);binding.size = get_size_by_dims(dims);binding.dims = dims;this->output_bindings.push_back(binding);this->num_outputs += 1;}}
}
//----------------------------------------------------------------------------------------
YOLOv8::~YOLOv8()
{this->context->destroy();this->engine->destroy();this->runtime->destroy();cudaStreamDestroy(this->stream);for (auto& ptr : this->device_ptrs) {CHECK(cudaFree(ptr));}for (auto& ptr : this->host_ptrs) {CHECK(cudaFreeHost(ptr));}
}
//----------------------------------------------------------------------------------------
void YOLOv8::MakePipe(bool warmup)
{
#ifndef CUDART_VERSION
#error CUDART_VERSION Undefined!
#endiffor (auto& bindings : this->input_bindings) {void* d_ptr;
#if(CUDART_VERSION < 11000)CHECK(cudaMalloc(&d_ptr, bindings.size * bindings.dsize));
#elseCHECK(cudaMallocAsync(&d_ptr, bindings.size * bindings.dsize, this->stream));
#endifthis->device_ptrs.push_back(d_ptr);}for (auto& bindings : this->output_bindings) {void * d_ptr, *h_ptr;size_t size = bindings.size * bindings.dsize;
#if(CUDART_VERSION < 11000)CHECK(cudaMalloc(&d_ptr, bindings.size * bindings.dsize));
#elseCHECK(cudaMallocAsync(&d_ptr, bindings.size * bindings.dsize, this->stream));
#endifCHECK(cudaHostAlloc(&h_ptr, size, 0));this->device_ptrs.push_back(d_ptr);this->host_ptrs.push_back(h_ptr);}if (warmup) {for (int i = 0; i < 10; i++) {for (auto& bindings : this->input_bindings) {size_t size  = bindings.size * bindings.dsize;void*  h_ptr = malloc(size);memset(h_ptr, 0, size);CHECK(cudaMemcpyAsync(this->device_ptrs[0], h_ptr, size, cudaMemcpyHostToDevice, this->stream));free(h_ptr);}this->Infer();}}
}
//----------------------------------------------------------------------------------------
void YOLOv8::Letterbox(const cv::Mat& image, cv::Mat& out, cv::Size& size)
{const float inp_h  = size.height;const float inp_w  = size.width;float       height = image.rows;float       width  = image.cols;float r    = std::min(inp_h / height, inp_w / width);int   padw = std::round(width * r);int   padh = std::round(height * r);cv::Mat tmp;if ((int)width != padw || (int)height != padh) {cv::resize(image, tmp, cv::Size(padw, padh));}else {tmp = image.clone();}float dw = inp_w - padw;float dh = inp_h - padh;dw /= 2.0f;dh /= 2.0f;int top    = int(std::round(dh - 0.1f));int bottom = int(std::round(dh + 0.1f));int left   = int(std::round(dw - 0.1f));int right  = int(std::round(dw + 0.1f));cv::copyMakeBorder(tmp, tmp, top, bottom, left, right, cv::BORDER_CONSTANT, {114, 114, 114});cv::dnn::blobFromImage(tmp, out, 1 / 255.f, cv::Size(), cv::Scalar(0, 0, 0), true, false, CV_32F);this->pparam.ratio  = 1 / r;this->pparam.dw     = dw;this->pparam.dh     = dh;this->pparam.height = height;this->pparam.width  = width;;
}
//----------------------------------------------------------------------------------------
void YOLOv8::CopyFromMat(const cv::Mat& image)
{cv::Mat  nchw;auto&    in_binding = this->input_bindings[0];auto     width      = in_binding.dims.d[3];auto     height     = in_binding.dims.d[2];cv::Size size{width, height};this->Letterbox(image, nchw, size);this->context->setBindingDimensions(0, nvinfer1::Dims{4, {1, 3, height, width}});CHECK(cudaMemcpyAsync(this->device_ptrs[0], nchw.ptr<float>(), nchw.total() * nchw.elemSize(), cudaMemcpyHostToDevice, this->stream));
}
//----------------------------------------------------------------------------------------
void YOLOv8::CopyFromMat(const cv::Mat& image, cv::Size& size)
{cv::Mat nchw;this->Letterbox(image, nchw, size);this->context->setBindingDimensions(0, nvinfer1::Dims{4, {1, 3, size.height, size.width}});CHECK(cudaMemcpyAsync(this->device_ptrs[0], nchw.ptr<float>(), nchw.total() * nchw.elemSize(), cudaMemcpyHostToDevice, this->stream));
}
//----------------------------------------------------------------------------------------
void YOLOv8::Infer()
{this->context->enqueueV2(this->device_ptrs.data(), this->stream, nullptr);for (int i = 0; i < this->num_outputs; i++) {size_t osize = this->output_bindings[i].size * this->output_bindings[i].dsize;CHECK(cudaMemcpyAsync(this->host_ptrs[i], this->device_ptrs[i + this->num_inputs], osize, cudaMemcpyDeviceToHost, this->stream));}cudaStreamSynchronize(this->stream);
}
//----------------------------------------------------------------------------------------
void YOLOv8::PostProcess(std::vector<Object>& objs, float score_thres, float iou_thres, int topk, int num_labels)
{objs.clear();auto num_channels = this->output_bindings[0].dims.d[1];auto num_anchors  = this->output_bindings[0].dims.d[2];auto& dw     = this->pparam.dw;auto& dh     = this->pparam.dh;auto& width  = this->pparam.width;auto& height = this->pparam.height;auto& ratio  = this->pparam.ratio;std::vector<cv::Rect> bboxes;std::vector<float>    scores;std::vector<int>      labels;std::vector<int>      indices;cv::Mat output = cv::Mat(num_channels, num_anchors, CV_32F, static_cast<float*>(this->host_ptrs[0]));output         = output.t();for (int i = 0; i < num_anchors; i++) {auto  row_ptr    = output.row(i).ptr<float>();auto  bboxes_ptr = row_ptr;auto  scores_ptr = row_ptr + 4;auto  max_s_ptr  = std::max_element(scores_ptr, scores_ptr + num_labels);float score      = *max_s_ptr;if (score > score_thres) {float x = *bboxes_ptr++ - dw;float y = *bboxes_ptr++ - dh;float w = *bboxes_ptr++;float h = *bboxes_ptr;float x0 = clamp((x - 0.5f * w) * ratio, 0.f, width);float y0 = clamp((y - 0.5f * h) * ratio, 0.f, height);float x1 = clamp((x + 0.5f * w) * ratio, 0.f, width);float y1 = clamp((y + 0.5f * h) * ratio, 0.f, height);int              label = max_s_ptr - scores_ptr;cv::Rect_<float> bbox;bbox.x      = x0;bbox.y      = y0;bbox.width  = x1 - x0;bbox.height = y1 - y0;bboxes.push_back(bbox);labels.push_back(label);scores.push_back(score);}}#ifdef BATCHED_NMScv::dnn::NMSBoxesBatched(bboxes, scores, labels, score_thres, iou_thres, indices);
#elsecv::dnn::NMSBoxes(bboxes, scores, score_thres, iou_thres, indices);
#endifint cnt = 0;for (auto& i : indices) {if (cnt >= topk) {break;}Object obj;obj.rect  = bboxes[i];obj.prob  = scores[i];obj.label = labels[i];objs.push_back(obj);cnt += 1;}
}
//----------------------------------------------------------------------------------------
void YOLOv8::DrawObjects(cv::Mat& bgr, const std::vector<Object>& objs)
{char text[256];for (auto& obj : objs) {cv::rectangle(bgr, obj.rect, cv::Scalar(255, 0, 0));sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);int      baseLine   = 0;cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);int x = (int)obj.rect.x;int y = (int)obj.rect.y - label_size.height - baseLine;if (y < 0)        y = 0;if (y > bgr.rows) y = bgr.rows;if (x + label_size.width > bgr.cols) x = bgr.cols - label_size.width;cv::rectangle(bgr, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), cv::Scalar(255, 255, 255), -1);cv::putText(bgr, text, cv::Point(x, y + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));}
}
//----------------------------------------------------------------------------------------
  • common.hpp
//
// Created by  triple-Mu     on 24-1-2023.
// Modified by Q-engineering on  6-3-2024
//#ifndef DETECT_NORMAL_COMMON_HPP
#define DETECT_NORMAL_COMMON_HPP
#include "NvInfer.h"
#include "opencv2/opencv.hpp"#define CHECK(call)                                                                                                    \do {                                                                                                               \const cudaError_t error_code = call;                                                                           \if (error_code != cudaSuccess) {                                                                               \printf("CUDA Error:\n");                                                                                   \printf("    File:       %s\n", __FILE__);                                                                  \printf("    Line:       %d\n", __LINE__);                                                                  \printf("    Error code: %d\n", error_code);                                                                \printf("    Error text: %s\n", cudaGetErrorString(error_code));                                            \exit(1);                                                                                                   \}                                                                                                              \} while (0)class Logger: public nvinfer1::ILogger {
public:nvinfer1::ILogger::Severity reportableSeverity;explicit Logger(nvinfer1::ILogger::Severity severity = nvinfer1::ILogger::Severity::kINFO):reportableSeverity(severity){}void log(nvinfer1::ILogger::Severity severity, const char* msg) noexcept override{if (severity > reportableSeverity) {return;}switch (severity) {case nvinfer1::ILogger::Severity::kINTERNAL_ERROR:std::cerr << "INTERNAL_ERROR: ";break;case nvinfer1::ILogger::Severity::kERROR:std::cerr << "ERROR: ";break;case nvinfer1::ILogger::Severity::kWARNING:std::cerr << "WARNING: ";break;case nvinfer1::ILogger::Severity::kINFO:std::cerr << "INFO: ";break;default:std::cerr << "VERBOSE: ";break;}std::cerr << msg << std::endl;}
};inline int get_size_by_dims(const nvinfer1::Dims& dims)
{int size = 1;for (int i = 0; i < dims.nbDims; i++) {size *= dims.d[i];}return size;
}inline int type_to_size(const nvinfer1::DataType& dataType)
{switch (dataType) {case nvinfer1::DataType::kFLOAT:return 4;case nvinfer1::DataType::kHALF:return 2;case nvinfer1::DataType::kINT32:return 4;case nvinfer1::DataType::kINT8:return 1;case nvinfer1::DataType::kBOOL:return 1;default:return 4;}
}inline static float clamp(float val, float min, float max)
{return val > min ? (val < max ? val : max) : min;
}namespace det {
struct Binding {size_t         size  = 1;size_t         dsize = 1;nvinfer1::Dims dims;std::string    name;
};struct Object {cv::Rect_<float> rect;int              label = 0;float            prob  = 0.0;
};struct PreParam {float ratio  = 1.0f;float dw     = 0.0f;float dh     = 0.0f;float height = 0;float width  = 0;
};
}  // namespace det
#endif  // DETECT_NORMAL_COMMON_HPP
  • yolov8.hpp
//
// Created by  triple-Mu     on 24-1-2023.
// Modified by Q-engineering on  6-3-2024
//
#ifndef DETECT_NORMAL_YOLOV8_HPP
#define DETECT_NORMAL_YOLOV8_HPP
#include "NvInferPlugin.h"
#include "common.hpp"
#include "fstream"using namespace det;class YOLOv8 {
private:nvinfer1::ICudaEngine*       engine  = nullptr;nvinfer1::IRuntime*          runtime = nullptr;nvinfer1::IExecutionContext* context = nullptr;cudaStream_t                 stream  = nullptr;Logger                       gLogger{nvinfer1::ILogger::Severity::kERROR};
public:int                  num_bindings;int                  num_inputs  = 0;int                  num_outputs = 0;std::vector<Binding> input_bindings;std::vector<Binding> output_bindings;std::vector<void*>   host_ptrs;std::vector<void*>   device_ptrs;PreParam pparam;public:explicit YOLOv8(const std::string& engine_file_path);~YOLOv8();void                 MakePipe(bool warmup = true);void                 CopyFromMat(const cv::Mat& image);void                 CopyFromMat(const cv::Mat& image, cv::Size& size);void                 Letterbox(const cv::Mat& image, cv::Mat& out, cv::Size& size);void                 Infer();void                 PostProcess(std::vector<Object>& objs, float score_thres, float iou_thres, int topk, int num_labels  = 80);void                 DrawObjects(cv::Mat& bgr, const std::vector<Object>& objs);
};
#endif  // DETECT_NORMAL_YOLOV8_HPP
  • CMakeLists.txt
cmake_minimum_required(VERSION 3.1)set(CMAKE_CUDA_ARCHITECTURES 60 61 62 70 72 75 86 89 90)
set(CMAKE_CUDA_COMPILER /usr/local/cuda/bin/nvcc)project(YoloV8rt LANGUAGES CXX CUDA)set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14 -O3")
set(CMAKE_CXX_STANDARD 14)
set(CMAKE_BUILD_TYPE Release)
option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)# CUDA
include_directories(/usr/local/cuda-10.2/targets/aarch64-linux/include)
link_directories(/usr/local/cuda-10.2/targets/aarch64-linux/lib)
# find_package(CUDA REQUIRED)
# message(STATUS "CUDA Libs: \n${CUDA_LIBRARIES}\n")
# get_filename_component(CUDA_LIB_DIR ${CUDA_LIBRARIES} DIRECTORY)
# message(STATUS "CUDA Headers: \n${CUDA_INCLUDE_DIRS}\n")# OpenCV
find_package(OpenCV REQUIRED)# TensorRT
set(TensorRT_INCLUDE_DIRS /usr/include /usr/include/aarch-linux-gnu)
set(TensorRT_LIBRARIES /usr/lib/aarch64-linux-gnu)message(STATUS "TensorRT Libs: \n\n${TensorRT_LIBRARIES}\n")
message(STATUS "TensorRT Headers: \n${TensorRT_INCLUDE_DIRS}\n")list(APPEND INCLUDE_DIRS${CUDA_INCLUDE_DIRS}${OpenCV_INCLUDE_DIRS}${TensorRT_INCLUDE_DIRS}include)list(APPEND ALL_LIBS${CUDA_LIBRARIES}${CUDA_LIB_DIR}${OpenCV_LIBRARIES}${TensorRT_LIBRARIES})include_directories(${INCLUDE_DIRS})add_executable(${PROJECT_NAME}src/main.cppsrc/yolov8.cppinclude/yolov8.hppinclude/common.hpp)target_link_libraries(${PROJECT_NAME} PUBLIC ${ALL_LIBS})
target_link_libraries(${PROJECT_NAME} PRIVATE nvinfer nvinfer_plugin cudart ${OpenCV_LIBS})#place exe in parent folder
set(EXECUTABLE_OUTPUT_PATH "./")if (${OpenCV_VERSION} VERSION_GREATER_EQUAL 4.7.0)message(STATUS "Build with -DBATCHED_NMS")add_definitions(-DBATCHED_NMS)
endif ()
  • 原项目地址
    https://github.com/Qengineering/YoloV8-TensorRT-Jetson_Nano

相关文章:

在invidia jetpack4.5.1上运行c++版yolov8(tensorRT)

心路历程&#xff08;可略过&#xff09; 为了能在arm64上跑通yolov8&#xff0c;我试过很多很多代码&#xff0c;太多对库版本的要求太高了&#xff1b; 比如说有一个是需要依赖onnx库的&#xff0c;&#xff08;https://github.com/UNeedCryDear/yolov8-opencv-onnxruntime-…...

Vue3 接入 i18n 实现国际化多语言

在 Vue.js 3 中实现网页的国际化多语言&#xff0c;最常用的包是 vue-i18n。 第一步&#xff0c;安装一个 Vite 下使用 <i18n> 标签的插件&#xff1a;unplugin-vue-i18n npm install unplugin-vue-i18n # 或 yarn add unplugin-vue-i18n 安装完成后&#xff0c;调整 v…...

深度学习环境坑。

前面装好了之后装pytorch之后老显示gpufalse。 https://www.jb51.net/article/247762.htm 原因就是清华源的坑。 安装的时候不要用conda&#xff0c; 用pip命令 我cuda12.6&#xff0c;4070s cudnn-windows-x86_64-8.9.7.29_cuda12-archive.zip cuda_12.5.1_555.85_windows.…...

LLM——10个大型语言模型(LLM)常见面试题以及答案解析

今天我们来总结以下大型语言模型面试中常问的问题 1、哪种技术有助于减轻基于提示的学习中的偏见? A.微调 Fine-tuning B.数据增强 Data augmentation C.提示校准 Prompt calibration D.梯度裁剪 Gradient clipping 答案:C 提示校准包括调整提示&#xff0c;尽量减少产生…...

MongoDB - 聚合阶段 $count、$skip、$project

文章目录 1. $count 聚合阶段2. $skip 聚合阶段3. $project 聚合阶段1. 包含指定字段2. 排除_id字段3. 排除指定字段4. 不能同时指定包含字段和排除字段5. 排除嵌入式文档中的指定字段6. 包含嵌入式文档中的指定字段7. 添加新字段8. 重命名字段 1. $count 聚合阶段 计算匹配到…...

如何获取文件缩略图(C#和C++实现)

在C中&#xff0c;可以有以下两种办法 使用COM接口IThumbnailCache 文档链接&#xff1a;IThumbnailCache (thumbcache.h) - Win32 apps | Microsoft Learn 示例代码如下&#xff1a; VOID GetFileThumbnail(PCWSTR path) {HRESULT hr CoInitialize(nullptr);IShellItem* i…...

create-vue项目的README中文版

使用方法 要使用 create-vue 创建一个新的 Vue 项目&#xff0c;只需在终端中运行以下命令&#xff1a; npm create vuelatest[!注意] (latest 或 legacy) 不能省略&#xff0c;否则 npm 可能会解析到缓存中过时版本的包。 或者&#xff0c;如果你需要支持 IE11&#xff0c;你…...

Centos 7系统(最小化安装)安装Git 、git-man帮助、补全git命令-详细文章

安装之前由于是最小化安装centos7安装一些开发环境和工具包 文章使用国内阿里源 cd /etc/yum.repos.d/ && mkdir myrepo && mv * myrepo&&lscurl -O https://mirrors.aliyun.com/repo/epel-7.repo;curl -O https://mirrors.aliyun.com/repo/Centos-7…...

Golang零基础入门课_20240726 课程笔记

视频课程 最近发现越来越多的公司在用Golang了&#xff0c;所以精心整理了一套视频教程给大家&#xff0c;这个只是其中的第一部&#xff0c;后续还会有很多。 视频已经录制完成&#xff0c;完整目录截图如下&#xff1a; 课程目录 01 第一个Go程序.mp402 定义变量.mp403 …...

杂记-镜像

-i https://pypi.tuna.tsinghua.edu.cn/simple 清华 pip intall 出现 error: subprocess-exited-with-error 错误的解决办法———————————pip install --upgrade pip setuptools57.5.0 ————————————————————————————————————…...

如何将WordPress文章中的外链图片批量导入到本地

在使用采集软件进行内容创作时&#xff0c;很多文章中的图片都是远程链接&#xff0c;这不仅会导致前端加载速度慢&#xff0c;还会在微信小程序和抖音小程序中添加各种域名&#xff0c;造成管理上的麻烦。特别是遇到没有备案的外链&#xff0c;更是让人头疼。因此&#xff0c;…...

primetime如何合并不同modes的libs到一个lib文件

首先&#xff0c;用primetime 抽 timing model 的指令如下。 代码如下&#xff08;示例&#xff09;&#xff1a; #抽lib时留一些margin, setup -max/hold -min set_extract_model_margin -port [get_ports -filter "!defined(clocks)"] -max 0.1 #抽lib extract_mod…...

【运维笔记】数据库无法启动,数据库炸后备份恢复数据

事情起因 在做docker作业的时候&#xff0c;把卷映射到了宿主机原来的mysql数据库目录上&#xff0c;宿主机原来的mysql版本为8.0&#xff0c;docker容器版本为5.6&#xff0c;导致翻车。 具体操作 备份目录 将/var/lib/mysql备份到~/mysql_backup&#xff1a;cp /var/lib/…...

成功解决:java.security.InvalidKeyException: Illegal key size

在集成微信支付到Spring Boot项目时&#xff0c;可能会遇到启动报错 java.security.InvalidKeyException: Illegal key size 的问题。这是由于Java加密扩展&#xff08;JCE&#xff09;限制了密钥的长度。幸运的是&#xff0c;我们可以通过简单的替换文件来解决这个问题。 解决…...

微服务事务管理(分布式事务问题 理论基础 初识Seata XA模式 AT模式 )

目录 一、分布式事务问题 1. 本地事务 2. 分布式事务 3. 演示分布式事务问题 二、理论基础 1. CAP定理 1.1 ⼀致性 1.2 可⽤性 1.3 分区容错 1.4 ⽭盾 2. BASE理论 3. 解决分布式事务的思路 三、初识Seata 1. Seata的架构 2. 部署TC服务 3. 微服务集成Se…...

测试面试宝典(三十五)—— fiddler的工作原理

Fiddler 是一款强大的 Web 调试工具&#xff0c;其工作原理主要基于代理服务器的机制。 首先&#xff0c;当您在计算机上配置 Fiddler 为系统代理时&#xff0c;客户端&#xff08;如浏览器&#xff09;发出的所有 HTTP 和 HTTPS 请求都会被导向 Fiddler。 Fiddler 接收到这些…...

旷野之间32 - OpenAI 拉开了人工智能竞赛的序幕,而Meta 将会赢得胜利

他们通过故事做到了这一点&#xff08;Snapchat 是第一个&#xff09;他们用 Reels 实现了这个功能&#xff08;TikTok 是第一个实现这个功能的&#xff09;他们正在利用人工智能来实现这一点。 在人工智能竞赛开始时&#xff0c;Meta 的人工智能平台的表现并没有什么特别值得…...

机械学习—零基础学习日志(高数15——函数极限性质)

零基础为了学人工智能&#xff0c;真的开始复习高数 这里我们将会学习函数极限的性质。 唯一性 来一个练习题&#xff1a; 再来一个练习&#xff1a; 这里我问了一下ChatGPT&#xff0c;如果一个值两侧分别趋近于正无穷&#xff0c;以及负无穷。理论上这个极限值应该说是不存…...

树 形 DP (dnf序)

二叉搜索子树的最大键值 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(null…...

React的生命周期?

React的生命周期分为三个主要阶段&#xff1a;挂载&#xff08;Mounting&#xff09;、更新&#xff08;Updating&#xff09;和卸载&#xff08;Unmounting&#xff09;。 1、挂载&#xff08;Mounting&#xff09; 当组件实例被创建并插入 DOM 时调用的生命周期方法&#x…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销&#xff0c;平衡网络负载&#xff0c;延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

k8s从入门到放弃之HPA控制器

k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率&#xff08;或其他自定义指标&#xff09;来调整这些对象的规模&#xff0c;从而帮助应用程序在负…...

Spring Boot + MyBatis 集成支付宝支付流程

Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例&#xff08;电脑网站支付&#xff09; 1. 添加依赖 <!…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;采用DevEco Studio实现&#xff0c;包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor

1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...