用神经网络分类上和下
( A, B )---3*30*2---( 1, 0 )( 0, 1 )
做一个网络,输入为3个点,训练集A,B各有4张图片。让B的4张图片全是0.排列组合A,记录迭代次数平均值的变化。收敛误差为7e-4,每个网络收敛199次。
其中得到一组数据
| 差值结构 | 1-A-B | 迭代次数 | 差值结构 | 2-A-B | 迭代次数 | |||||
| 0 | 0 | 0 | 0*3*1*6-0*0*0*0 | 6394.4774 | 1 | 1 | 0 | 6*1*3*0-0*0*0*0 | 7134.0452 | |
| 0 | 1 | 1 | 0*3*1*6-0*0*0*0 | 6394.4774 | 0 | 0 | 1 | 6*1*3*0-0*0*0*0 | 7134.0452 | |
| 0 | 0 | 1 | 0*3*1*6-0*0*0*0 | 6394.4774 | 0 | 1 | 1 | 6*1*3*0-0*0*0*0 | 7134.0452 | |
| 1 | 1 | 0 | 0*3*1*6-0*0*0*0 | 6394.4774 | 0 | 0 | 0 | 6*1*3*0-0*0*0*0 | 7134.0452 | |
| 0 | 0 | 0 | 0*6*4*3-0*0*0*0 | 6408.3869 | 0 | 1 | 1 | 3*4*6*0-0*0*0*0 | 7174.8894 | |
| 1 | 1 | 0 | 0*6*4*3-0*0*0*0 | 6408.3869 | 1 | 0 | 0 | 3*4*6*0-0*0*0*0 | 7174.8894 | |
| 1 | 0 | 0 | 0*6*4*3-0*0*0*0 | 6408.3869 | 1 | 1 | 0 | 3*4*6*0-0*0*0*0 | 7174.8894 | |
| 0 | 1 | 1 | 0*6*4*3-0*0*0*0 | 6408.3869 | 0 | 0 | 0 | 3*4*6*0-0*0*0*0 | 7174.8894 | |
| 0 | 1 | 1 | 3*1*6*0-0*0*0*0 | 6488.0352 | 0 | 0 | 0 | 0*6*1*3-0*0*0*0 | 7141.7538 | |
| 0 | 0 | 1 | 3*1*6*0-0*0*0*0 | 6488.0352 | 1 | 1 | 0 | 0*6*1*3-0*0*0*0 | 7141.7538 | |
| 1 | 1 | 0 | 3*1*6*0-0*0*0*0 | 6488.0352 | 0 | 0 | 1 | 0*6*1*3-0*0*0*0 | 7141.7538 | |
| 0 | 0 | 0 | 3*1*6*0-0*0*0*0 | 6488.0352 | 0 | 1 | 1 | 0*6*1*3-0*0*0*0 | 7141.7538 | |
| 1 | 1 | 0 | 6*4*3*0-0*0*0*0 | 6390.9497 | 0 | 0 | 0 | 0*3*4*6-0*0*0*0 | 7112.809 | |
| 1 | 0 | 0 | 6*4*3*0-0*0*0*0 | 6390.9497 | 0 | 1 | 1 | 0*3*4*6-0*0*0*0 | 7112.809 | |
| 0 | 1 | 1 | 6*4*3*0-0*0*0*0 | 6390.9497 | 1 | 0 | 0 | 0*3*4*6-0*0*0*0 | 7112.809 | |
| 0 | 0 | 0 | 6*4*3*0-0*0*0*0 | 6390.9497 | 1 | 1 | 0 | 0*3*4*6-0*0*0*0 | 7112.809 | |
| 0 | 0 | 1 | 1*6*0*3-0*0*0*0 | 6462.3166 | 0 | 1 | 1 | 3*0*6*1-0*0*0*0 | 7140.9397 | |
| 1 | 1 | 0 | 1*6*0*3-0*0*0*0 | 6462.3166 | 0 | 0 | 0 | 3*0*6*1-0*0*0*0 | 7140.9397 | |
| 0 | 0 | 0 | 1*6*0*3-0*0*0*0 | 6462.3166 | 1 | 1 | 0 | 3*0*6*1-0*0*0*0 | 7140.9397 | |
| 0 | 1 | 1 | 1*6*0*3-0*0*0*0 | 6462.3166 | 0 | 0 | 1 | 3*0*6*1-0*0*0*0 | 7140.9397 | |
| 1 | 0 | 0 | 4*3*0*6-0*0*0*0 | 6486.1156 | 1 | 1 | 0 | 6*0*3*4-0*0*0*0 | 7181.9447 | |
| 0 | 1 | 1 | 4*3*0*6-0*0*0*0 | 6486.1156 | 0 | 0 | 0 | 6*0*3*4-0*0*0*0 | 7181.9447 | |
| 0 | 0 | 0 | 4*3*0*6-0*0*0*0 | 6486.1156 | 0 | 1 | 1 | 6*0*3*4-0*0*0*0 | 7181.9447 | |
| 1 | 1 | 0 | 4*3*0*6-0*0*0*0 | 6486.1156 | 1 | 0 | 0 | 6*0*3*4-0*0*0*0 | 7181.9447 | |
| 1 | 1 | 0 | 6*0*3*1-0*0*0*0 | 6379.392 | 0 | 0 | 1 | 1*3*0*6-0*0*0*0 | 7126.4573 | |
| 0 | 0 | 0 | 6*0*3*1-0*0*0*0 | 6379.392 | 0 | 1 | 1 | 1*3*0*6-0*0*0*0 | 7126.4573 | |
| 0 | 1 | 1 | 6*0*3*1-0*0*0*0 | 6379.392 | 0 | 0 | 0 | 1*3*0*6-0*0*0*0 | 7126.4573 | |
| 0 | 0 | 1 | 6*0*3*1-0*0*0*0 | 6379.392 | 1 | 1 | 0 | 1*3*0*6-0*0*0*0 | 7126.4573 | |
| 0 | 1 | 1 | 3*0*6*4-0*0*0*0 | 6444.2764 | 1 | 0 | 0 | 4*6*0*3-0*0*0*0 | 7173.6533 | |
| 0 | 0 | 0 | 3*0*6*4-0*0*0*0 | 6444.2764 | 1 | 1 | 0 | 4*6*0*3-0*0*0*0 | 7173.6533 | |
| 1 | 1 | 0 | 3*0*6*4-0*0*0*0 | 6444.2764 | 0 | 0 | 0 | 4*6*0*3-0*0*0*0 | 7173.6533 | |
| 1 | 0 | 0 | 3*0*6*4-0*0*0*0 | 6444.2764 | 0 | 1 | 1 | 4*6*0*3-0*0*0*0 | 7173.6533 | |
这16组数据,左侧为第1列,右侧的为第2列。第1列的迭代次数全都小于第2列, 并且第1列和第2列的差值结构都是上下对称的,比如前3组
| 1 | 2 | |||||
| 0 | 0 | 0 | 1 | 1 | 0 | |
| 0 | 1 | 1 | 0 | 0 | 1 | |
| 0 | 0 | 1 | 0 | 1 | 1 | |
| 1 | 1 | 0 | 0 | 0 | 0 | |
| 0 | 0 | 0 | 0 | 1 | 1 | |
| 1 | 1 | 0 | 1 | 0 | 0 | |
| 1 | 0 | 0 | 1 | 1 | 0 | |
| 0 | 1 | 1 | 0 | 0 | 0 | |
| 0 | 1 | 1 | 0 | 0 | 0 | |
| 0 | 0 | 1 | 1 | 1 | 0 | |
| 1 | 1 | 0 | 0 | 0 | 1 | |
| 0 | 0 | 0 | 0 | 1 | 1 |
左右两侧的结构是对称的,但迭代次数确不相同,这种对称性被破缺了,神经网络到底是如何判断哪个是上,哪个是下的?
比较二者的结构
| 0*3*1*6-0*0*0*0 | ||||||||||
| 0 | 0 | 0 | → | 0 | 1 | 1 | → | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | ||
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | ||
| 1 | 1 | 0 | ||||||||
如果略去全是0的一行,第1列的结构都可以变换成上三角矩阵。
| 3*4*6*0-0*0*0*0 | ||||||||||||||
| 0 | 1 | 1 | → | 0 | 1 | 1 | → | 1 | 1 | 0 | → | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | |||
| 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | |||
| 0 | 0 | 0 |
而第2列的结构经变换后得到的都是下三角矩阵。
所以上三角矩阵的迭代次数是小于下三角矩阵的迭代次数的,
| A | B | |||||
| 1 | 1 | 0 | 〈 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | |
| 0 | 0 | 1 | 1 | 1 | 0 | |
| 0 | 0 | 0 | 0 | 1 | 1 |
质心越低的迭代次数越大。所以对于这种特别的情况,用神经网络分类上下是可能的。尽管差值结构可以按照行1→2→3→4→1的顺序随意的变换而不改变迭代次数,但这种变换本身并不会改变形态内在的上下特征,这意味这神经网络各行的权重是不同的。而差值结构的列都可以按照1→2→3→1的顺序变换而不改变迭代次数,如
| 0 | 0 | 0 | 0*3*1*6-0*0*0*0 | 6394.477387 |
| 0 | 1 | 1 | 0*3*1*6-0*0*0*0 | 6394.477387 |
| 0 | 0 | 1 | 0*3*1*6-0*0*0*0 | 6394.477387 |
| 1 | 1 | 0 | 0*3*1*6-0*0*0*0 | 6394.477387 |
| 0 | 0 | 0 | 0*6*2*5-0*0*0*0 | 6478.336683 |
| 1 | 1 | 0 | 0*6*2*5-0*0*0*0 | 6478.336683 |
| 0 | 1 | 0 | 0*6*2*5-0*0*0*0 | 6478.336683 |
| 1 | 0 | 1 | 0*6*2*5-0*0*0*0 | 6478.336683 |
| 0 | 0 | 0 | 0*5*4*3-0*0*0*0 | 6415.944724 |
| 1 | 0 | 1 | 0*5*4*3-0*0*0*0 | 6415.944724 |
| 1 | 0 | 0 | 0*5*4*3-0*0*0*0 | 6415.944724 |
| 0 | 1 | 1 | 0*5*4*3-0*0*0*0 | 6415.944724 |
这说明神经网络各列是同权的,无差别,所以如果神经网络有质心,应该是到边的而不是到中心的。
| 差值结构 | 1-A-B | 迭代次数 | 差值结构 | 2-A-B | 迭代次数 | ||||||||||||||
| 1 | 1 | 0 | 0 | 0 | 0 | 0*3*1*6-0*0*0*0 | 6394.4774 | 1 | 1 | 0 | 6*1*3*0-0*0*0*0 | 7134.0452 | 0 | 0 | 1 | ||||
| 0 | 1 | 1 | 0 | 1 | 1 | 0*3*1*6-0*0*0*0 | 6394.4774 | 0 | 0 | 1 | 6*1*3*0-0*0*0*0 | 7134.0452 | 0 | 1 | 1 | ||||
| 0 | 0 | 1 | 0 | 0 | 1 | 0*3*1*6-0*0*0*0 | 6394.4774 | 0 | 1 | 1 | 6*1*3*0-0*0*0*0 | 7134.0452 | 1 | 1 | 0 | ||||
| 1 | 1 | 0 | 0*3*1*6-0*0*0*0 | 6394.4774 | 0 | 0 | 0 | 6*1*3*0-0*0*0*0 | 7134.0452 | ||||||||||
| 0 | 1 | 1 | 0 | 0 | 0 | 0*6*4*3-0*0*0*0 | 6408.3869 | 0 | 1 | 1 | 3*4*6*0-0*0*0*0 | 7174.8894 | 1 | 0 | 0 | ||||
| 1 | 1 | 0 | 1 | 1 | 0 | 0*6*4*3-0*0*0*0 | 6408.3869 | 1 | 0 | 0 | 3*4*6*0-0*0*0*0 | 7174.8894 | 1 | 1 | 0 | ||||
| 1 | 0 | 0 | 1 | 0 | 0 | 0*6*4*3-0*0*0*0 | 6408.3869 | 1 | 1 | 0 | 3*4*6*0-0*0*0*0 | 7174.8894 | 0 | 1 | 1 | ||||
| 0 | 1 | 1 | 0*6*4*3-0*0*0*0 | 6408.3869 | 0 | 0 | 0 | 3*4*6*0-0*0*0*0 | 7174.8894 | ||||||||||
| 1 | 1 | 0 | 0 | 1 | 1 | 3*1*6*0-0*0*0*0 | 6488.0352 | 0 | 0 | 0 | 0*6*1*3-0*0*0*0 | 7141.7538 | 0 | 0 | 1 | ||||
| 0 | 1 | 1 | 0 | 0 | 1 | 3*1*6*0-0*0*0*0 | 6488.0352 | 1 | 1 | 0 | 0*6*1*3-0*0*0*0 | 7141.7538 | 0 | 1 | 1 | ||||
| 0 | 0 | 1 | 1 | 1 | 0 | 3*1*6*0-0*0*0*0 | 6488.0352 | 0 | 0 | 1 | 0*6*1*3-0*0*0*0 | 7141.7538 | 1 | 1 | 0 | ||||
| 0 | 0 | 0 | 3*1*6*0-0*0*0*0 | 6488.0352 | 0 | 1 | 1 | 0*6*1*3-0*0*0*0 | 7141.7538 | ||||||||||
| 0 | 1 | 1 | 1 | 1 | 0 | 6*4*3*0-0*0*0*0 | 6390.9497 | 0 | 0 | 0 | 0*3*4*6-0*0*0*0 | 7112.809 | 1 | 0 | 0 | ||||
| 1 | 1 | 0 | 1 | 0 | 0 | 6*4*3*0-0*0*0*0 | 6390.9497 | 0 | 1 | 1 | 0*3*4*6-0*0*0*0 | 7112.809 | 1 | 1 | 0 | ||||
| 1 | 0 | 0 | 0 | 1 | 1 | 6*4*3*0-0*0*0*0 | 6390.9497 | 1 | 0 | 0 | 0*3*4*6-0*0*0*0 | 7112.809 | 0 | 1 | 1 | ||||
| 0 | 0 | 0 | 6*4*3*0-0*0*0*0 | 6390.9497 | 1 | 1 | 0 | 0*3*4*6-0*0*0*0 | 7112.809 | ||||||||||
| 1 | 1 | 0 | 0 | 0 | 1 | 1*6*0*3-0*0*0*0 | 6462.3166 | 0 | 1 | 1 | 3*0*6*1-0*0*0*0 | 7140.9397 | 0 | 0 | 1 | ||||
| 0 | 1 | 1 | 1 | 1 | 0 | 1*6*0*3-0*0*0*0 | 6462.3166 | 0 | 0 | 0 | 3*0*6*1-0*0*0*0 | 7140.9397 | 0 | 1 | 1 | ||||
| 0 | 0 | 1 | 0 | 0 | 0 | 1*6*0*3-0*0*0*0 | 6462.3166 | 1 | 1 | 0 | 3*0*6*1-0*0*0*0 | 7140.9397 | 1 | 1 | 0 | ||||
| 0 | 1 | 1 | 1*6*0*3-0*0*0*0 | 6462.3166 | 0 | 0 | 1 | 3*0*6*1-0*0*0*0 | 7140.9397 | ||||||||||
| 0 | 1 | 1 | 1 | 0 | 0 | 4*3*0*6-0*0*0*0 | 6486.1156 | 1 | 1 | 0 | 6*0*3*4-0*0*0*0 | 7181.9447 | 1 | 0 | 0 | ||||
| 1 | 1 | 0 | 0 | 1 | 1 | 4*3*0*6-0*0*0*0 | 6486.1156 | 0 | 0 | 0 | 6*0*3*4-0*0*0*0 | 7181.9447 | 1 | 1 | 0 | ||||
| 1 | 0 | 0 | 0 | 0 | 0 | 4*3*0*6-0*0*0*0 | 6486.1156 | 0 | 1 | 1 | 6*0*3*4-0*0*0*0 | 7181.9447 | 0 | 1 | 1 | ||||
| 1 | 1 | 0 | 4*3*0*6-0*0*0*0 | 6486.1156 | 1 | 0 | 0 | 6*0*3*4-0*0*0*0 | 7181.9447 | ||||||||||
| 1 | 1 | 0 | 1 | 1 | 0 | 6*0*3*1-0*0*0*0 | 6379.392 | 0 | 0 | 1 | 1*3*0*6-0*0*0*0 | 7126.4573 | 0 | 0 | 1 | ||||
| 0 | 1 | 1 | 0 | 0 | 0 | 6*0*3*1-0*0*0*0 | 6379.392 | 0 | 1 | 1 | 1*3*0*6-0*0*0*0 | 7126.4573 | 0 | 1 | 1 | ||||
| 0 | 0 | 1 | 0 | 1 | 1 | 6*0*3*1-0*0*0*0 | 6379.392 | 0 | 0 | 0 | 1*3*0*6-0*0*0*0 | 7126.4573 | 1 | 1 | 0 | ||||
| 0 | 0 | 1 | 6*0*3*1-0*0*0*0 | 6379.392 | 1 | 1 | 0 | 1*3*0*6-0*0*0*0 | 7126.4573 | ||||||||||
| 0 | 1 | 1 | 0 | 1 | 1 | 3*0*6*4-0*0*0*0 | 6444.2764 | 1 | 0 | 0 | 4*6*0*3-0*0*0*0 | 7173.6533 | 1 | 0 | 0 | ||||
| 1 | 1 | 0 | 0 | 0 | 0 | 3*0*6*4-0*0*0*0 | 6444.2764 | 1 | 1 | 0 | 4*6*0*3-0*0*0*0 | 7173.6533 | 1 | 1 | 0 | ||||
| 1 | 0 | 0 | 1 | 1 | 0 | 3*0*6*4-0*0*0*0 | 6444.2764 | 0 | 0 | 0 | 4*6*0*3-0*0*0*0 | 7173.6533 | 0 | 1 | 1 | ||||
| 1 | 0 | 0 | 3*0*6*4-0*0*0*0 | 6444.2764 | 0 | 1 | 1 | 4*6*0*3-0*0*0*0 | 7173.6533 | ||||||||||
相关文章:
用神经网络分类上和下
( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 做一个网络,输入为3个点,训练集A,B各有4张图片。让B的4张图片全是0.排列组合A,记录迭代次数平均值的变化。收敛误差为7e-4,每个网络收敛199次。 其中得到一组数据 差值结构 1-A-B 迭代次…...
VS Code 1.75 发布!
欢迎使用 2023 年 1 月版的 Visual Studio Code。希望您喜欢此版本中的许多更新,其中一些主要亮点包括:配置文件、VS Marketplace 签名、辅助功能改进、更轻松地调整多视图大小、树视图搜索历史、新的 Git 命令等等。让我们一起看看吧! 配置文…...
Vue2仿网易云风格音乐播放器(附源码)
Vue2仿网易云风格音乐播放器1、整体效果2、使用技术3、实现内容4、源码5、使用图片1、整体效果 2、使用技术 使用了HTML5 CSS3进行页面布局及美化使用Vue2进行数据渲染与页面交互使用Axios发送http请求获取数据 3、实现内容 实现了搜索歌曲功能,输入歌手或歌曲关…...
Spring相关面试题
文章目录请谈一下你对 spring 的理解?说一下 Spring 的核心是什么?请谈 一下你对 Spring IOC 和 和 AOP 的理解?请说一下 Spring 的 的 Bean 作用域?请谈一下Spring中bean对象的生命周期?Spring中的事务是如何实现的 &…...
操作符详解(上篇)
前言小伙伴们大家好,随着对c的不断学习今天我们将来学习操作符。在初始c语言中也介绍过操作符但也只是点到即可,今天我们将详细了解操作符。操作符分类:算术操作符移位操作符位操作符赋值操作符单目操作符关系操作符逻辑操作符条件操作符逗号…...
采样电路的3个组成部分
采样电路的使用实际上是电路的一个闭环控制过程,也可以理解为一个负反馈过程,采集的信号被传送到主控制芯片进行调整。今天就来为您介绍一下采样电路的三个组成部分分析!一起来看看吧! 这里的采样实际上分为电流采样、电压采样、…...
ffmpeg硬解码与软解码的压测对比
文章目录ffmpeg硬解码与软解码的压测一、基本知识二、压测实验1. 实验条件及工具说明2. 压测脚本3. 实验数据结果ffmpeg硬解码与软解码的压测 一、基本知识 本文基于intel集显进行压测 软解码:cpu对视频进行解码硬解码:显卡或者多媒体处理芯片对视频进…...
操作符——“C”
各位CSDN的uu们你们好呀,今天,总算是要到我们的操作符啦,在C语言中,操作符是一个极为复杂的东西,下面,就让我们进入操作符的世界吧 算术操作符 移位操作符 位操作符 赋值操作符 单目操作符 关系操作符…...
YSP的UI界面设计
文章目录一、准备工作二、UI设计1.QPushButton:三、遇到的bug一、准备工作 1.MSVC和MinGW上编译的项目,不能用另一个编译器进行编译 2.若要使用MSVC编译器,需要下载对应版本的VS 见此篇:https://blog.csdn.net/Copperxcx/article…...
干货 | 什么是磁传感器?最常用的磁传感器类型及应用
1、什么是磁传感器?磁传感器通常是指将磁场的大小和变化转换成电信号。磁场,以地球磁场(地磁)或磁石为例的磁场是我们熟悉但不可见的现象。将不可见的磁场转化为电信号,以及转化为可见效应的磁传感器一直以来都是研究的主题。从几十年前使用电…...
操作符(运算符)详解
🚀🚀🚀大家觉不错的话,就恳求大家点点关注,点点小爱心,指点指点🚀🚀🚀 目录 🐰算数操作符: - * / % 🐰移位操作符&#x…...
【LeetCode每日一题】【2023/2/9】1797. 设计一个验证系统
文章目录1797. 设计一个验证系统方法1:哈希表代码总体1797. 设计一个验证系统 LeetCode: 1797. 设计一个验证系统 中等\color{#FFB800}{中等}中等 你需要设计一个包含验证码的验证系统。每一次验证中,用户会收到一个新的验证码,这个验证码在…...
计算机图形学:改进的中点BH算法
作者:非妃是公主 专栏:《计算机图形学》 博客地址:https://blog.csdn.net/myf_666 个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩 文章目录专栏推荐专栏系列文章序一、改进缘由二、…...
【SQL开发实战技巧】系列(六):从执行计划看NOT IN、NOT EXISTS 和 LEFT JOIN效率,记住内外关联条件不要乱放
系列文章目录 【SQL开发实战技巧】系列(一):关于SQL不得不说的那些事 【SQL开发实战技巧】系列(二):简单单表查询 【SQL开发实战技巧】系列(三):SQL排序的那些事 【SQL开发实战技巧…...
十分钟利用环信WebIM-vue3-Demo,打包上线一个即时通讯项目【含音视频通话】
这篇文章无废话,只教你如果接到即时通讯功能需求,十分钟利用环信WebIM-vue3-Demo,打包上线一个即时通讯项目【包含音视频通话功能】。 写这篇文章是因为,结合自身情况,以及所遇到的有同样情况的开发者在接到即时通讯&a…...
pandas——DataFrame基本操作(二)【建议收藏】
pandas——DataFrame基本操作(二) 文章目录pandas——DataFrame基本操作(二)一、实验目的二、实验原理三、实验环境四、实验内容五、实验步骤1.修改数据2.缺失值3.合并1.concat合并2.使用append方法合并3.使用merge进行合并4.使用…...
PostgreSQL查询引擎——General Expressions Grammar之restricted expression
General expressions语法规则定义在src/backend/parser/gram.y文件中,其是表达式语法的核心。有两种表达式类型:a_expr是不受限制的类型,b_expr是必须在某些地方使用的子集,以避免移位/减少冲突。例如,我们不能将BETWE…...
从某种程度上来看,产业互联网是一次对于互联网的弥补和修正
如果对当下我们正在经历的这样一个时代进行一次定义的话,我更加愿意将其划归到产业互联网的范畴里。可能有人会说,这与产业互联网并无联系,因为从本质上来看,当下我们所经历的这样一个时代,其实是与互联网并没有太多联…...
【C#Unity题】1.委托和事件在使用上的区别是什么?2.C#中 == 和 Equals 的区别是什么?
1.委托和事件在使用上的区别是什么? 委托和事件是C#中的重要概念,通俗来讲,委托是一个可以指向特定方法的指针,可以将委托分配给不同的脚本,使它们能够完成不同的任务。而事件则是一种使用委托实现的通知机制ÿ…...
FFmpeg5.0源码阅读——内存池AVBufferPool
摘要:FFmpeg中大多数数据存储比如AVFrame,AVPacket都是通过AVBufferRef管理的,而承载数据的结构为AVBuffer。本文主要通过FFmpeg源码来分析下FFmpeg中AVBuffer相关的实现。 关键字:AVBuffer、AVBufferPool、AVBufferPool 1. AVBufferRef 1.…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
