图像处理案例03
HOG+SVM数字识别
- 1 . 步骤
- 2 . 代码
1 . 步骤
- 读入数据,把数据划分为训练集和测试集
- 用hog提取特征
- 用SVM训练数据
- 测试、评价模型
- 保存模型
- 加载模型,应用模型
2 . 代码
import os
import cv2
import sklearn
import numpy as np
from skimage.feature import hog
from skimage import data,exposure
from sklearn import svm
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import seaborn as sn
import pandas as pd
from joblib import dump,load
from sklearn.metrics import confusion_matrix# 1. 读入数据
# 1.1 处理数据,获取图像的地址和标签,划分训练集、测试集,对数据集打乱顺序
data_path = r'./hand_nums'
tmp_train = os.listdir(data_path+'/train')
tmp_test = os.listdir(data_path+'/test')
train_x ,test_x = [],[]
## 1.2 获取图像的地址,把训练集和测试集的特征和标签
test_y ,test_y = [],[]
for i in tmp_train:if i.endswith('.bmp'):train_x.append(data_path+'/train/'+i)train_y.append(int(i.split('-')[0]))
for i in tmp_test:if i.endswith('.bmp'):test_x.append(data_path+'/test/'+i)test_y.append(int(i.split('.')[0]))
## 1.3 打乱数据的顺序
## 训练集、测试集的下标
train_idx = np.arange(len(train_x))
test_idx = np.arange(len(test_x))
## 打乱顺序
np.random.shuffle(train_idx)
np.random.shuffle(test_idx)
## 训练集、测试集打乱顺序
train_x = list(np.array(train_x)[train_idx])
test_x = list(np.array(test_x)[test_idx])
train_y = list(np.array(train_y)[train_idx])
test_y = list(np.array(test_y)[test_idx])# 2. 用hog提取特征
## 2.1 hog实例化
train_feature,test_feature = [],[]
## 获取训练集特征
for i in train_x:img_gray = cv2.imread(i,0)fd , img_hog = hog(img_gray,orientations=9,pixels_per_cell=(8,8),cells_per_block=(2,2),visualize=True)train_feature.append(img_hog.flatten())
## 获取测试集特征
for i in test_x:img_gray = cv2.imread(i,0)fd,img_hog = hog(img_gray,orientations=9,pixels_per_cell=(8,8),cells_per_block=(2,2),visualize=True)test_feature.append(img_hog.flatten())# 3 SVM训练
clf = svm.SVC(decision_function_shape='ovo')
clf.fit(train_feature ,train_y)
# 4. 测试、评价模型
dec = clf.decision_function(test_feature)
pred_y = clf.predict(test_feature)
accuracy_score(pred_y,test_y)
# 5. 保存模型
from joblib import dump,load
## 保存模型
dump(clf,'./hand_nums/models/poly.joblib')
## 加载模型
new_cls = load('./hand_nums/models/poly.joblib')
pred_y = new_cls.predict(test_feature)
accuracy_score(pred_y,test_y)# 6. 加载模型,应用模型
clf_poly = svm.SVC(decision_function_shape='ovo',kernel='poly')
clf_poly.fit(train_feature ,train_y)
dec = clf_poly.decision_function(test_feature)
pred_y = clf_poly.predict(test_feature)
accuracy_score(pred_y,test_y)clf_linear = svm.SVC(decision_function_shape='ovo',kernel='linear')
clf_linear.fit(train_feature ,train_y)
dec = clf_linear.decision_function(test_feature)
pred_y = clf_linear.predict(test_feature)
accuracy_score(pred_y,test_y)
cm = confusion_matrix(test_y,pred_y)df_cm = pd.Dataframe(cm,index=[i for i in ['0','1','2','3','4','5','6','7','8','9']],columns = [i for i in ['0','1','2','3','4','5','6','7','8','9']])
plt.figure(figsize=(10,7))
sn.heatmap(df_cm,annot=True,cmap='Green',fmt='d')
准确率 1.0
嘻嘻😁
数据集:链接:https://pan.baidu.com/s/1yFCJvcswdSgGcAN6n9u-nA 密码:ryqo
相关文章:
图像处理案例03
HOGSVM数字识别 1 . 步骤2 . 代码 1 . 步骤 读入数据,把数据划分为训练集和测试集用hog提取特征用SVM训练数据测试、评价模型保存模型加载模型,应用模型 2 . 代码 import os import cv2 import sklearn import numpy as np from skimage.feature impo…...
【Kubernetes】k8s集群中kubectl的陈述式资源管理
目录 一.k8s集群资源管理方式分类 1.陈述式资源管理方式 2.声明式资源管理方式 二.陈述式资源管理方法 三.kubectl命令 四.项目生命周期 1.创建 kubectl create命令 2.发布 kubectl expose命令 3.更新 kubectl set 4.回滚 kubectl rollout 5.删除 k…...
串---顺序串实现
顺序串详解 本文档将详细介绍顺序串的基本概念、实现原理及其在 C 语言中的具体应用。通过本指南,读者将了解如何使用顺序串进行各种字符串操作。 1. 什么是顺序串? 顺序串是一种用于存储字符串的数据结构,它使用一组连续的内存空间来保存…...
吴恩达机器学习WEEK2
COURSE1 WEEK2 多维特征 在线性回归中,往往特征不止一个,而是具有多维特征 例如,在预测房价的例子中,我们知道更多的信息: x 1 x_1 x1:房屋的面积 x 2 x_2 x2:卧室的数目 x 3 x_3 x3&a…...
yield and generator in python
首先,假设大家都对于pytyhon的List comprehension的使用有了一定经验(它可以用于list,set,和dict哦) 不熟悉的参考介绍: Comprehending Python’s Comprehensions – dbader.org generator generator是哦…...
spring原理(自学第六天)
Aware 接口及 InitializingBean 接口 今天将会学到Aware 接口及 InitializingBean 接口 我们可以先了解他们的作用: 1. Aware 接口用于注入一些与容器相关信息, 例如 a. BeanNameAware 注入 bean 的名字 b. BeanFactoryAware 注入…...
案例分享—国外优秀ui设计作品赏析
国外UI设计创意迭出,融合多元文化元素,以极简风搭配动态交互,打造沉浸式体验,色彩运用大胆前卫,引领界面设计新风尚 同时注重用户体验的深度挖掘,通过个性化定制与智能算法结合,让界面不仅美观且…...
【C++】简约与清晰的编程艺术
C编程的艺术:简约与清晰的实践之道 一、基础之美:基本类型与数据结构的力量二、函数与库类的艺术三、简约与清晰的实践之道 在C这一既古老又充满活力的编程语言世界里,程序员们常常面临着一个重要的选择:是追求代码的极致抽象与封…...
java之WIFI信号模块
开发步骤分为以下几点: 1.在 AndroidManifest 中声明相关权限(网络和文件读写权限) 声明权限: <uses-permission android:name"android.permission.ACCESS_WIFI_STATE" /> <uses-permission android:name"android.…...
Mybatis面试
Mybatis 面试 1、Mybatis 的执行流程是什么? 1、读取MyBatis配置文件:mybatis-config.xml 加载运行环境 和 映射文件 2、构造会话工厂 SqlSessionFactory (全局只有一个) 3、会话工厂创建SqlSession对象(项目与数据…...
Centos 8系统xfs文件系统类型进行扩容缩容 (LVM)
Centos 8系统xfs文件系统类型进行扩容缩容 (LVM),xfs分区类型是不支持正常缩容,只能强制缩容 1.磁盘情况:2.缩容home分区1.备份home数据:2.查找使用 /home 的进程:3.终止这些进程:4.卸载 /home …...
C语言基础知识之函数指针和指针函数
函数指针和指针函数 函数指针和指针函数指向函数的指针返回指针值的函数指针函数和函数指针的区别 问题1_1代码1_1结果1_1 函数指针和指针函数 指向函数的指针 用函数指针变量调用函数 可以用指针变量指向整型变量、字符串、数组,也可以指向一个函数。一个…...
【Unity】web gl inputFied 中文输入,同时支持TextMeshInputFied,支持全屏
同时支持TextMeshInputFied,支持全屏。 使用github包【WebGLInput】:https://github.com/kou-yeung/WebGLInput 需要资源的在这里也可以下载 https://download.csdn.net/download/weixin_46472622/89600795 用于unity web gl 中文输入,只需…...
vue3+vite全局引入less变量和函数
需要在vite配置 plugins: [css: {preprocessorOptions: {less: {additionalData: import "./src/styles/variables.module.less"; import "./src/views/Visualization/component/ViewportCom/px2viewport.less";,javascriptEnabled: true}}}, ]多个文件按…...
H81002S 1.7mm网络变压器:BMS汽车蓝牙接收器中的超薄共模电感科技
华强盛导读:在当今这个日新月异的汽车科技领域,每一处细节都蕴含着创新与突破。作为电动汽车心脏的电池管理系统(BMS),其高效稳定的运行不仅关乎续航与安全,更是智能化驾驶体验的基石。而在这背后ÿ…...
C语言.回调函数
回调函数 回调函数也是一个函数。与一般函数直接调用区别在于,使用回调函数的过程,是一个函数将另一个函数作为参数调用。而被用来调用的那个函数,就是回调函数。 回调函数就是一个通过函数指针调用的函数。如果你把函数的指针(地…...
《从零开始:使用Python构建简单Web爬虫》
前言 随着互联网信息的爆炸性增长,如何高效地获取和处理这些数据变得越来越重要。Web爬虫作为一种自动化工具,可以帮助我们快速抓取所需的网页内容。本文将介绍如何使用Python编写一个简单的Web爬虫,并通过实例演示其基本用法。 准备工作 …...
最新个人免签约支付系统源码|PHP源码 | 码支付系统 | ThinkPHP6框架 | 开源
源码介绍: 这个最新的个人专用免签约支付系统源码!是PHP源码写的哦,而且是用ThinkPHP6框架开发的,完全开源的码支付系统。 这个系统适合个人用户使用,作为收款的免签约解决方案。它还加入了监控端,可以拒…...
The Llama 3 Herd of Models 第4部分后训练的全文
Llama 3前三部分包括介绍、总体概述和预训练https://blog.csdn.net/qq_51570094/article/details/140682445?spm=1001.2014.3001.5501 4 Post-Training 后训练 我们通过应用几轮后训练6或将模型与人类反馈对齐来生成对齐的Llama 3模型(Ouyang等人,2022;Rafailov等人,2024)在…...
MongoDB性能调优
文章目录 MongoDB性能调优MongoDB性能不佳原因影响MongoDB性能的因素MongoDB性能监控工具mongostatmongotopProfiler模块db.currentOp() MongoDB性能调优 MongoDB性能不佳原因 慢查询阻塞等待硬件资源不足 1,2通常是因为模型/索引设计不佳导致的 排查思路:按1-2…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
