数据结构入门——06树
1.树
树(Tree)非线性数据结构,它是n(n≥0)个节点的有限集合,它满足两个条件 :
有且仅有一个特定的称为根(Root)的节点;
其余的节点可以分为m(m≥0)个互不相交的有限集合T1、T2、……、Tm,其中每一个集合又是一棵树,并称为其根的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
因此,树是递归定义的。
树的表示方法 :树形表示法、目录表示法。
- 一个节点的子树的个数称为该节点的度数。
- 一棵树的度数是指该树中节点的最大度数。
- 度数为零的节点称为树叶或终端节点。
- 度数不为零的节点称为分支节点。
- 除根节点外的分支节点称为内部节点。
森林
- 若树中每个节点的各个子树的排列为从左到右,不能交换,即兄弟之间是有序的,则该树称为有序树。
- m(m≥0)棵互不相交的树的集合称为森林。
- 树去掉根节点就成为森林,森林加上一个新的根节点就成为树。
2.树的表示
树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,
如:双亲表示法,孩子表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子
兄弟表示法。
2.1兄弟表示法
typedef int DataType;
struct Node
{struct Node* _firstChild1; // 第一个孩子结点struct Node* _pNextBrother; // 指向其下一个兄弟结点DataType _data; // 结点中的数据域
};
2.2双亲表示法
3.二叉树
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子
树和右子树的二叉树组成。
二叉树特点
- 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
- 二叉树的子树有左右之分,其子树的次序不能颠倒。
3.1特殊的二叉树
3.1.1满二叉树
一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。
3.1.2完全二叉树
完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。最后一层是连续的,前面的k-1层为满的。 满二叉树是一种特殊的完全二叉树。完全二叉树度为1 的,最多有一个。
3.2二叉树的性质
- 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
- 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h- 1.(等比数列求和1+2+2^2+...+2^h)
- 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有n0=n2+1.
- 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=LogN.
3.3二叉树的存储结构
二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
3.3.1顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树
会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。
在数组中: 父亲下标为i,左孩子下标为2*i+1,右孩子下标为2*i+2.
孩子下标为i,父亲下标为(i-1)/2.(不论是左还是右,下标都为整数)
3.3.2链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的
方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩
子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链。
// 二叉链
struct BinaryTreeNode
{struct BinTreeNode* pLeft; // 指向当前节点左孩子struct BinTreeNode* pRight; // 指向当前节点右孩子BTDataType _data; // 当前节点值域
}
// 三叉链
struct BinaryTreeNode比特就业课
{struct BinTreeNode* pParent; // 指向当前节点的双亲struct BinTreeNode* pLeft; // 指向当前节点左孩子struct BinTreeNode* pRight; // 指向当前节点右孩子BTDataType _data; // 当前节点值域
};
4.二叉树链式结构的实现
所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访
问结点所做的操作依赖于具体的应用问 题。 遍历是二叉树上最重要的运算之一,是二叉树上进行
其它运算之基础。
4.1二叉树链式结构的遍历
- 前序/中序/后序的递归结构遍历:是根据访问结点操作发生位置命名,为深度优先。
- NLR:前序遍历(Preorder Traversal 亦称先序遍历)——根->左子树->右子树。
- LNR:中序遍历(Inorder Traversal)——左子树->根->右子树。
- LRN:后序遍历(Postorder Traversal)——左子树->右子树->根。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
- 层序遍历:设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。为广度优先。
typedef int BTDataType;typedef struct BinaryTreeNode
{struct BinaryTreeNode* left;struct BinaryTreeNode* right;BTDataType data;
}BTNode;BTNode* BuyBTNode(BTDataType x)
{BTNode* node = (BTNode*)malloc(sizeof(BTNode));if (node == NULL){printf("malloc fail\n");exit(-1);}node->data = x;node->left = node->right = NULL;return node;
}BTNode* CreatBinaryTree()
{BTNode* node1 = BuyBTNode(1);BTNode* node2 = BuyBTNode(2);BTNode* node3 = BuyBTNode(3);BTNode* node4 = BuyBTNode(4);BTNode* node5 = BuyBTNode(5);BTNode* node6 = BuyBTNode(6);node1->left = node2;node1->right = node4;node2->left = node3;node4->left = node5;node4->right = node6;return node1;
}
上述代码创建一个二叉树,如下图所示
4.1.1前序遍历(A->B->D->NULL->C->F->G)
void PrevOrder(BTNode* root) {if (root == NULL) {printf("NULL ");return;}printf("%d ", root->data);PrevOrder(root->left);PrevOrder(root->right);
}
4.1.2中序遍历(D->B->NULL->A->F->C->G)
void InOrder(BTNode* root) {if (root == NULL){printf("NULL ");return;}InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}
4.1.3后序遍历 (D->NULL->B->F->G->C->A)
void PosOrder(BTNode* root) {if (root == NULL){printf("NULL ");return;}PosOrder(root->left);PosOrder(root->right);printf("%d ", root->data);
}
4.1.4二叉树的结点个数
int BTreeSize(BTNode* root) {return root == NULL ? 0 :BTreeSize(root->left) + BTreeSize(root->right) + 1;
}
4.1.5第k层的节点的个数,k >= 1
int BTreeKLevelSize(BTNode* root, int k)
{assert(k >= 1);if (root == NULL)return 0;if (k == 1)return 1;return BTreeKLevelSize(root->left, k - 1)+ BTreeKLevelSize(root->right, k - 1);
}
4.1.6求二叉树的深度
int BTreeDepth(BTNode* root)
{if (root == NULL)return 0;int leftDepth = BTreeDepth(root->left);int rightDepth = BTreeDepth(root->right);return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}
4.1.7二叉树查找值为x的结点
BTNode* BTreeFind(BTNode* root, BTDataType x)
{if (root == NULL)return NULL;if (root->data == x)return root;BTNode* ret1 = BTreeFind(root->left, x);if (ret1)return ret1;//return BTreeFind(root->right, x);BTNode* ret2 = BTreeFind(root->right, x);if (ret2)return ret2;return NULL;
}
4.1.8二叉树销毁
void BTreeDestory(BTNode* root)
{if (root == NULL){return;}BTreeDestory(root->left);BTreeDestory(root->right);free(root);
}
4.1.9层序遍历(需要队列进行入队和出队)
void LevelOrder(BTNode* root)
{Queue q;QueueInit(&q);if (root){QueuePush(&q, root);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);printf("%d ", front->data);if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}}printf("\n");QueueDestory(&q);
}
4.1.10判断二叉树是否是完全二叉树
// 判断二叉树是否是完全二叉树
bool BTreeComplete(BTNode* root)
{Queue q;QueueInit(&q);if (root)QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front == NULL)break;QueuePush(&q, front->left);QueuePush(&q, front->right);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);// 空后面出到非空,那么说明不是完全二叉树if (front){QueueDestory(&q);return false;}}QueueDestory(&q);return true;
}
相关文章:

数据结构入门——06树
1.树 树(Tree)非线性数据结构,它是n(n≥0)个节点的有限集合,它满足两个条件 : 有且仅有一个特定的称为根(Root)的节点; 其余的节点可以分为m(m…...
FFmpeg源码:av_packet_move_ref、av_packet_make_refcounted函数分析
一、av_packet_move_ref函数 (一)av_packet_move_ref函数的声明 av_packet_move_ref函数声明在FFmpeg源码(本文演示用的FFmpeg源码版本为7.0.1)的头文件libavcodec/packet.h中: /*** Move every field in src to ds…...

12 中断
12 中断 1、内核中断编程2、顶半部和底半部机制2.1 任务的相关概念2.1.1 分类2.1.2 优先级2.1.3 进程调度2.1.4 休眠sleep 2.2 顶半部和底半部实现机制2.2.1 顶半部特点2.2.2 底半部特点2.2.3 底半部实现方法之:tasklet2.2.4 底半部实现机制之工作队列2.2.5 底半部实现机制之软…...

经典算法题总结:十大排序算法,外部排序和Google排序简介
十大排序算法 就地性:顾名思义,原地排序通过在原数组上直接操作实现排序,无须借助额外的辅助数组,从而节省内存。通常情况下,原地排序的数据搬运操作较少,运行速度也更快。 稳定性:稳定排序在完…...

服务器是什么?怎么选择适合自己的服务器?
在这个数字化的世界中,我们每天都在与各种网站打交道,浏览新闻、购物、看视频等。你是否曾经好奇过,这些网站是如何运行的?它们又是如何实现随时随地可访问的呢? 在这背后,有一个神秘的角色在默默地支撑着…...

区块链技术的应用场景
区块链技术是一种分布式数据库或公共分类账的形式,它保证了数据的完整性和透明性。它最初是为了支持比特币这种加密货币而被发明的,但现在已经被广泛应用于多种领域,包括供应链管理、投票系统、数字身份验证等。 基本概念 区块 (Block) 区块…...

凤凰端子音频矩阵应用领域
凤凰端子音频矩阵,作为一种集成了凤凰端子接口的音频矩阵设备,具有广泛的应用领域。以下是其主要应用领域: 一、专业音响系统 会议系统:在会议室中,凤凰端子音频矩阵能够处理多个话筒和音频源的信号,实现…...
LeetCode-字母异位词分组
题目描述 给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单词。 示例 1: 输入: strs ["eat", "tea", "tan", "ate", "na…...

《Linux运维总结:基于x86_64架构CPU使用docker-compose一键离线部署etcd 3.5.15容器版分布式集群》
总结:整理不易,如果对你有帮助,可否点赞关注一下? 更多详细内容请参考:《Linux运维篇:Linux系统运维指南》 一、部署背景 由于业务系统的特殊性,我们需要面对不同的客户部署业务系统࿰…...

WPF动画
补间动画:动画本质就是在一个时间段内对象尺寸、位移、旋转角度、缩放、颜色、透明度等属性值的连续变化。也包括图形变形的属性。时间、变化的对象、变化的值 工业应用场景:蚂蚁线、旋转、高度变化、指针偏移、小车 WPF动画与分类 特定对象处理动画过…...
大数据系列之:统计hive表的详细信息,生成csv统计表
大数据系列之:统计hive表的详细信息,生成csv统计表 一、获取源数据库、源数据库类型、hive数据库名称二、获取hive数据库名、hive表名、数仓层级、空间、维护者信息三、统计hive表信息四、统计源库信息五、合并hive表信息六、生成csv统计表七、完整代码一、获取源数据库、源数…...

flutter 画转盘
import package:flutter/material.dart; import dart:math;const double spacingAngle 45.0; // 每两个文字之间的角度 // 自定义绘制器,ArcTextPainter 用于在圆弧上绘制文字 class ArcTextPainter extends CustomPainter {final double rotationAngle; // 动画旋…...

图像识别,图片线条检测
import cv2 import numpy as np # 读取图片 img cv2.imread(1.png)# 灰度化 gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 边缘检测 edges cv2.Canny(gray, 100, 200) 当某个像素点的梯度强度低于 threshold1 时,该像素点被认为是非边缘;当梯度强度…...
python crawler web page
npm install or pip install 插件 import json import time from openpyxl import load_workbook from pip._vendor import requests from bs4 import BeautifulSoup import pandas as pd import re import xlsxwriter 設置request header header {user-agent: Mozilla/5.0…...

基于QT实现的TCP连接的网络通信(客户端)
上篇介绍了QT实现网络通信的服务器端,还没看服务器的朋友们先去上篇了解,这篇我来实现一下客户端的实现。 首先还是新建一个项目 选择mainwindow类 在通信前将.pro文件的第一行代码中追加network 窗口搭建 在mainwindow.ui中完成一下窗口的搭建 首先在…...

Vue2中watch与Vue3中watch对比
上一节说到了 computed计算属性对比 ,虽然计算属性在大多数情况下更合适,但有时也需要一个自定义的侦听器。这就是为什么 Vue 通过 watch 选项提供了一个更通用的方法,来响应数据的变化。当需要在数据变化时执行异步或开销较大的操作时&#…...
Web 3 一些常见术语
目录 Provider 提供者Signer 签名者Transaction 交易Contract 合约Receipt 收据 首先,从高层次上对可用对象的类型及其负责的内容有一个基本的了解是很有用的。 Provider 提供者 一个 Provider 是与区块链的只读连接,允许查询区块链状态,例…...
揭开数据分析中的规范性分析:从入门到精通
目录 引言1. 规范性分析的基本概念2. 规范性分析的方法论2.1 线性规划:资源利用最大化2.2 决策树分析:直观的选择路径2.3 贝叶斯网络:应对不确定性的利器2.4 多目标优化:平衡多重目标的艺术 3. 规范性分析的实际应用3.1 商业决策中…...

Linux文件IO
目录 前言 一.文件操作 系统调用接口 1.打开文件 2.关闭文件 3.读取文件 4.写入文件 二.文件描述符 重定向 三.动静态库 前言 在Linux操作系统中,文件I/O是一个核心概念,涉及如何读写文件、与设备通信以及如何管理数据流。Linux下一切皆文件, …...
ccfcsp-202309(1、2、3)
202309-1 坐标变换(其一) #include <bits/stdc.h> using namespace std; int main() {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);int n, m;cin >> n >> m;int x, y;int opx 0, opy 0;for(int i 0; i < n; i){cin &g…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

C++实现分布式网络通信框架RPC(2)——rpc发布端
有了上篇文章的项目的基本知识的了解,现在我们就开始构建项目。 目录 一、构建工程目录 二、本地服务发布成RPC服务 2.1理解RPC发布 2.2实现 三、Mprpc框架的基础类设计 3.1框架的初始化类 MprpcApplication 代码实现 3.2读取配置文件类 MprpcConfig 代码实现…...

WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...