当前位置: 首页 > news >正文

【高等代数笔记】003线性方程组的解法(一)

1. 线性方程组的解法

1.1 解线性方程组的矩阵消元法

【例1】解线性方程组 { x 1 + 3 x 2 + x 3 = 2 3 x 1 + 4 x 2 + 2 x 3 = 9 − x 1 − 5 x 2 + 4 x 3 = 10 2 x 1 + 7 x 2 + x 3 = 1 \left\{\begin{array}{ll} x_{1}+3x_{2}+x_{3}=2 \\ 3x_{1}+4x_{2}+2x_{3}=9 \\ -x_{1}-5x_{2}+4x_{3}=10 \\ 2x_{1}+7x_{2}+x_{3}=1 \end{array}\right. x1+3x2+x3=23x1+4x2+2x3=9x15x2+4x3=102x1+7x2+x3=1
【解】将第一个方程做基础,因为它的 x 1 x_{1} x1的系数是1,比较好算,然后把第二个方程的 x 1 x_{1} x1的系数变成0,那就把第一个方程的-3倍加到第2个方程,把第一个方程的1倍加到第三个方程,把第一个方程的-2倍加到第四个方程。
第二个方程+第一个方程×(-3)即 { x 1 + 3 x 2 + x 3 = 2 − 5 x 2 − x 3 = 3 − 2 x 2 + 5 x 3 = 12 x 2 − x 3 = − 3 \left\{\begin{array}{ll} x_{1}+3x_{2}+x_{3}=2 \\ -5x_{2}-x_{3}=3 \\ -2x_{2}+5x_{3}=12 \\ x_{2}-x_{3}=-3 \end{array}\right. x1+3x2+x3=25x2x3=32x2+5x3=12x2x3=3
然后观察到第四个方程的 x 2 x_{2} x2的系数为1,把第四个方程和第二个方程调换一下位置
{ x 1 + 3 x 2 + x 3 = 2 x 2 − x 3 = − 3 − 2 x 2 + 5 x 3 = 12 − 5 x 2 − x 3 = 3 \left\{\begin{array}{ll} x_{1}+3x_{2}+x_{3}=2 \\ x_{2}-x_{3}=-3\\ -2x_{2}+5x_{3}=12 \\ -5x_{2}-x_{3}=3 \end{array}\right. x1+3x2+x3=2x2x3=32x2+5x3=125x2x3=3
把第二个方程的2倍加到第三个方程,第二个方程的5倍加到第四个方程,但是每次写未知量太麻烦,我们写成增广矩阵做,对方程的操作相当于对矩阵的行的操作,也就是将刚才的步骤写成:
( 1 3 1 2 3 4 2 9 − 1 − 5 4 10 2 7 1 1 ) ⟶ ( 1 3 1 2 0 − 5 − 1 3 0 − 2 5 12 0 1 − 1 − 3 ) ⟶ ( 1 3 1 2 0 1 − 1 − 3 0 − 2 5 12 0 − 5 − 1 3 ) ⟶ ( 1 3 1 2 0 1 − 1 − 3 0 0 3 6 0 0 − 6 − 12 ) (第三行的 2 倍加到第四行) ⟶ ( 1 3 1 2 0 1 − 1 − 3 0 0 3 6 0 0 0 0 ) \begin{pmatrix} 1& 3 & 1 &2 \\ 3& 4 & 2& 9\\ -1& -5 & 4 &10 \\ 2 & 7 & 1 & 1 \end{pmatrix}\longrightarrow \begin{pmatrix} 1& 3 & 1 &2 \\ 0& -5 & -1& 3\\ 0& -2 & 5 &12 \\ 0 & 1 & -1 & -3 \end{pmatrix}\longrightarrow \begin{pmatrix} 1& 3 & 1 &2 \\ 0 & 1 & -1 & -3\\ 0& -2 & 5 &12 \\ 0& -5 & -1& 3 \end{pmatrix}\longrightarrow \begin{pmatrix} 1& 3 & 1 &2 \\ 0 & 1 & -1 & -3\\ 0& 0 & 3 &6 \\ 0& 0 & -6& -12 \end{pmatrix}(第三行的2倍加到第四行)\longrightarrow \begin{pmatrix} 1& 3 & 1 &2 \\ 0 & 1 & -1 & -3\\ 0& 0 & 3 &6 \\ 0& 0 & 0& 0 \end{pmatrix} 13123457124129101 10003521115123123 10003125115123123 10003100113623612 (第三行的2倍加到第四行) 1000310011302360
到这个程度的时候,我们写出相应的方程组:
{ x 1 + 3 x 2 + x 3 = 2 x 2 − x 3 = − 3 3 x 3 = 6 \left\{\begin{array}{ll} x_{1}+3x_{2}+x_{3}=2 \\ x_{2}-x_{3}=-3 \\ 3x_{3}=6 \\ \end{array}\right. x1+3x2+x3=2x2x3=33x3=6
这种形式的方程组能够很方便解出来,这个方程组像台阶一样,称为阶梯形方程组,相应的增广矩阵称为阶梯形矩阵

  • 阶梯形方程组
    (1)元素全为0的行在下方(0行在下方)
    (2)非0行第一个非0元素(首非0元)称为主元,主元的列指标(列下标)随着行指标的增加而严格地增大。

或者接着再往下做,将第三行乘 1 3 \frac{1}{3} 31
⟶ ( 1 3 1 2 0 1 − 1 − 3 0 0 1 2 0 0 0 0 ) \longrightarrow \begin{pmatrix} 1& 3 & 1 &2 \\ 0 & 1 & -1 & -3\\ 0& 0 & 1 &2 \\ 0& 0 & 0& 0 \end{pmatrix} 1000310011102320
把第三行的一倍加到第二行(消去行首非0元素后面的元素):
⟶ ( 1 3 1 2 0 1 0 − 1 0 0 1 2 0 0 0 0 ) \longrightarrow \begin{pmatrix} 1& 3 & 1 &2 \\ 0 & 1 & 0 & -1\\ 0& 0 & 1 &2 \\ 0& 0 & 0& 0 \end{pmatrix} 1000310010102120
第三行的-1倍加到第一行:
⟶ ( 1 3 0 0 0 1 0 − 1 0 0 1 2 0 0 0 0 ) \longrightarrow \begin{pmatrix} 1& 3 & 0 &0 \\ 0 & 1 & 0 & -1\\ 0& 0 & 1 &2 \\ 0& 0 & 0& 0 \end{pmatrix} 1000310000100120
现在第一行还有一个 x 2 x_{2} x2的系数,要把3也变成0,则第二行的-3倍加到第一行
⟶ ( 1 0 0 3 0 1 0 − 1 0 0 1 2 0 0 0 0 ) \longrightarrow \begin{pmatrix} 1& 0 & 0 &3 \\ 0 & 1 & 0 & -1\\ 0& 0 & 1 &2 \\ 0& 0 & 0& 0 \end{pmatrix} 1000010000103120
由此可知 x 1 = 3 , x 2 = − 1 , x 3 = 2 x_{1}=3,x_{2}=-1,x_{3}=2 x1=3,x2=1,x3=2
这就全用矩阵来计算解线性方程组。
此时主元都是1,主元所在列的其余元素都是0,称这样的矩阵为简化行阶梯形矩阵

相关文章:

【高等代数笔记】003线性方程组的解法(一)

1. 线性方程组的解法 1.1 解线性方程组的矩阵消元法 【例1】解线性方程组 { x 1 3 x 2 x 3 2 3 x 1 4 x 2 2 x 3 9 − x 1 − 5 x 2 4 x 3 10 2 x 1 7 x 2 x 3 1 \left\{\begin{array}{ll} x_{1}3x_{2}x_{3}2 \\ 3x_{1}4x_{2}2x_{3}9 \\ -x_{1}-5x_{2}4x_{3}10 \\…...

Scrapy入门教程

Scrapy入门教程:打造高效爬虫的第一步 1. 引言 在当今的网络世界中,信息是无价的资源。而爬虫工具则是获取这些资源的有力武器。Scrapy 是 Python 生态系统中最强大的爬虫框架之一,它不仅功能强大,而且易于扩展,适用…...

Microsoft VBA Excel VBA学习笔记——双重筛选+复制数值1.0

问题场景 CountryProductCLASS 1CLASS 2CLASS 3CLASS 4CLASS 5CLASS 6…USApple0.3641416030.8918210610.0591451990.7320110290.0509636560.222464259…USBanana0.2300833330.4027262180.1548836670.2988904860.7802326210.028592635…CNApple0.7762370470.5075548320.481978…...

谷歌反垄断官司败诉后,或又面临被拆分风险?

KlipC报道:上周8月5日,美国法院裁定谷歌的搜索业务违反了美国反垄断法,非法垄断在线搜索和搜索文本广告市场。据悉,胜诉的美国司法部正在考虑拆分谷歌。其他选项包括强制谷歌与竞争对手分享更多数据,以及防止其在人工智…...

数据结构入门——06树

1.树 树(Tree)非线性数据结构,它是n(n≥0)个节点的有限集合,它满足两个条件 : 有且仅有一个特定的称为根(Root)的节点; 其余的节点可以分为m(m…...

FFmpeg源码:av_packet_move_ref、av_packet_make_refcounted函数分析

一、av_packet_move_ref函数 (一)av_packet_move_ref函数的声明 av_packet_move_ref函数声明在FFmpeg源码(本文演示用的FFmpeg源码版本为7.0.1)的头文件libavcodec/packet.h中: /*** Move every field in src to ds…...

12 中断

12 中断 1、内核中断编程2、顶半部和底半部机制2.1 任务的相关概念2.1.1 分类2.1.2 优先级2.1.3 进程调度2.1.4 休眠sleep 2.2 顶半部和底半部实现机制2.2.1 顶半部特点2.2.2 底半部特点2.2.3 底半部实现方法之:tasklet2.2.4 底半部实现机制之工作队列2.2.5 底半部实现机制之软…...

经典算法题总结:十大排序算法,外部排序和Google排序简介

十大排序算法 就地性:顾名思义,原地排序通过在原数组上直接操作实现排序,无须借助额外的辅助数组,从而节省内存。通常情况下,原地排序的数据搬运操作较少,运行速度也更快。 稳定性:稳定排序在完…...

服务器是什么?怎么选择适合自己的服务器?

在这个数字化的世界中,我们每天都在与各种网站打交道,浏览新闻、购物、看视频等。你是否曾经好奇过,这些网站是如何运行的?它们又是如何实现随时随地可访问的呢? 在这背后,有一个神秘的角色在默默地支撑着…...

区块链技术的应用场景

区块链技术是一种分布式数据库或公共分类账的形式,它保证了数据的完整性和透明性。它最初是为了支持比特币这种加密货币而被发明的,但现在已经被广泛应用于多种领域,包括供应链管理、投票系统、数字身份验证等。 基本概念 区块 (Block) 区块…...

凤凰端子音频矩阵应用领域

凤凰端子音频矩阵,作为一种集成了凤凰端子接口的音频矩阵设备,具有广泛的应用领域。以下是其主要应用领域: 一、专业音响系统 会议系统:在会议室中,凤凰端子音频矩阵能够处理多个话筒和音频源的信号,实现…...

LeetCode-字母异位词分组

题目描述 给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单词。 示例 1: 输入: strs ["eat", "tea", "tan", "ate", "na…...

《Linux运维总结:基于x86_64架构CPU使用docker-compose一键离线部署etcd 3.5.15容器版分布式集群》

总结:整理不易,如果对你有帮助,可否点赞关注一下? 更多详细内容请参考:《Linux运维篇:Linux系统运维指南》 一、部署背景 由于业务系统的特殊性,我们需要面对不同的客户部署业务系统&#xff0…...

WPF动画

补间动画:动画本质就是在一个时间段内对象尺寸、位移、旋转角度、缩放、颜色、透明度等属性值的连续变化。也包括图形变形的属性。时间、变化的对象、变化的值 工业应用场景:蚂蚁线、旋转、高度变化、指针偏移、小车 WPF动画与分类 特定对象处理动画过…...

大数据系列之:统计hive表的详细信息,生成csv统计表

大数据系列之:统计hive表的详细信息,生成csv统计表 一、获取源数据库、源数据库类型、hive数据库名称二、获取hive数据库名、hive表名、数仓层级、空间、维护者信息三、统计hive表信息四、统计源库信息五、合并hive表信息六、生成csv统计表七、完整代码一、获取源数据库、源数…...

flutter 画转盘

import package:flutter/material.dart; import dart:math;const double spacingAngle 45.0; // 每两个文字之间的角度 // 自定义绘制器,ArcTextPainter 用于在圆弧上绘制文字 class ArcTextPainter extends CustomPainter {final double rotationAngle; // 动画旋…...

图像识别,图片线条检测

import cv2 import numpy as np # 读取图片 img cv2.imread(1.png)# 灰度化 gray cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 边缘检测 edges cv2.Canny(gray, 100, 200) 当某个像素点的梯度强度低于 threshold1 时,该像素点被认为是非边缘;当梯度强度…...

python crawler web page

npm install or pip install 插件 import json import time from openpyxl import load_workbook from pip._vendor import requests from bs4 import BeautifulSoup import pandas as pd import re import xlsxwriter 設置request header header {user-agent: Mozilla/5.0…...

基于QT实现的TCP连接的网络通信(客户端)

上篇介绍了QT实现网络通信的服务器端,还没看服务器的朋友们先去上篇了解,这篇我来实现一下客户端的实现。 首先还是新建一个项目 选择mainwindow类 在通信前将.pro文件的第一行代码中追加network 窗口搭建 在mainwindow.ui中完成一下窗口的搭建 首先在…...

Vue2中watch与Vue3中watch对比

上一节说到了 computed计算属性对比 ,虽然计算属性在大多数情况下更合适,但有时也需要一个自定义的侦听器。这就是为什么 Vue 通过 watch 选项提供了一个更通用的方法,来响应数据的变化。当需要在数据变化时执行异步或开销较大的操作时&#…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage)&#xff1a…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

【实施指南】Android客户端HTTPS双向认证实施指南

&#x1f510; 一、所需准备材料 证书文件&#xff08;6类核心文件&#xff09; 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema&#xff0c;不需要复杂的查询&#xff0c;只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 &#xff1a;在几秒钟…...

Qt的学习(二)

1. 创建Hello Word 两种方式&#xff0c;实现helloworld&#xff1a; 1.通过图形化的方式&#xff0c;在界面上创建出一个控件&#xff0c;显示helloworld 2.通过纯代码的方式&#xff0c;通过编写代码&#xff0c;在界面上创建控件&#xff0c; 显示hello world&#xff1b; …...

JUC并发编程(二)Monitor/自旋/轻量级/锁膨胀/wait/notify/锁消除

目录 一 基础 1 概念 2 卖票问题 3 转账问题 二 锁机制与优化策略 0 Monitor 1 轻量级锁 2 锁膨胀 3 自旋 4 偏向锁 5 锁消除 6 wait /notify 7 sleep与wait的对比 8 join原理 一 基础 1 概念 临界区 一段代码块内如果存在对共享资源的多线程读写操作&#xf…...