当前位置: 首页 > news >正文

ubuntu 24.04 安装 Nvidia 显卡驱动 + CUDA + cuDNN,配置 AI 深度学习训练环境,简单易懂,一看就会!

ubuntu 24.04 安装 Nvidia 显卡驱动 + CUDA + cuDNN,配置 AI 深度学习训练环境,简单易懂,一看就会!

1.查看本机显卡型号
lspci | grep -i nvidia

输出如下:

01:00.0 3D controller: NVIDIA Corporation GM108M [GeForce 920MX] (rev a2)

其中,GeForce 920MX就是我们的显卡型号。

2.下载 Nvidia 显卡驱动

官网:点击此处下载NVIDIA驱动

根据显卡型号搜索驱动:

在这里插入图片描述

选择查找

在这里插入图片描述

下载最新版驱动

在这里插入图片描述

3.安装显卡驱动

安装编译环境

sudo apt update
sudo apt install gcc make

运行安装程序

chmod +x NVIDIA-Linux-x86_64-560.31.02.run
sudo ./NVIDIA-Linux-x86_64-560.31.02.run

选择“Continue installation”,回车

在这里插入图片描述

进入编译中…

在这里插入图片描述

注意:在这里编译时会出现编译错误而中断,原因是下载的显卡驱动是最新的,需要用较高的 gcc 版本编译器来编译,默认 gcc 的版本是 11,小于编译所需要的 12 版本。因此需要安装 12 版本的,并调整 gcc 链接。

sudo apt install gcc-12
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/x86_64-linux-gnu-gcc-12 20

重新运行安装程序:

sudo ./NVIDIA-Linux-x86_64-560.31.02.run

编译通过后,接着运行到下面这里,选择“Yes”

在这里插入图片描述

安装过程中,会提示是否禁用 nouveau 驱动,选择是,NVIDIA 会自动屏蔽 nouveau 驱动,不用手动禁止。

在安装过程中,没有不是特别要求的话,提示选择是否的话,可以都选择“是”。

在这里插入图片描述

终端运行nvidia-smi

输出如下,可以查看到版本号和显存:

在这里插入图片描述

安装完成,重启。

4.CUDA 安装

查看显卡支持的 CUDA 版本

nvidia-smi

输出如下:

在这里插入图片描述

CUDA 最高可用版本为 12.6

到官网下载 CUDA:https://developer.nvidia.com/cuda-toolkit-archive

注意:CUDA 需要注册登录 NVIDIA 官网才能下载。

在这里插入图片描述

选择 12.6 版本以下的都可,最高版本可选择 12.6,根据系统版本选择相应的项:

在这里插入图片描述

得到下载地址和运行命令:

在这里插入图片描述

这里是:

wget https://developer.download.nvidia.com/compute/cuda/12.2.2/local_installers/cuda_12.2.2_535.104.05_linux.runsudo sh cuda_12.2.2_535.104.05_linux.run

这里以 CUDA Toolkit 12.2.2为例安装:

chmod +x cuda_12.2.2_535.104.05_linux.run 
sudo ./cuda_12.2.2_535.104.05_linux.run 

选择“Continue”

在这里插入图片描述

输入“accept”

在这里插入图片描述

取消“Driver”选项,因为已经安装过显卡驱动了, 这里不需要安装,然后选择“Install”。

在这里插入图片描述

等待安装完成。

配置环境

nano ~/.bashrc

在文件最后添加以下内容:

export PATH=$PATH:/usr/local/cuda-12.2/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.2/lib64 

重载配置

source ~/.bashrc

检查安装

nvcc -V

输出如下,则安装成功:

在这里插入图片描述

5.安装 cuDNN

官网下载:https://developer.nvidia.com/rdp/cudnn-download

在这里插入图片描述

选择相应项后会生成下载命令:

wget https://developer.download.nvidia.com/compute/cudnn/9.3.0/local_installers/cudnn-local-repo-ubuntu2404-9.3.0_1.0-1_amd64.debsudo dpkg -i cudnn-local-repo-ubuntu2404-9.3.0_1.0-1_amd64.debsudo cp /var/cudnn-local-repo-ubuntu2404-9.3.0/cudnn-*-keyring.gpg /usr/share/keyrings/sudo apt-get updatesudo apt-get -y install cudnn

一般最新版本的显卡驱动都能适配最新版本的 cuDNN,若最新版本不适合当前的 CUDA,可以安装历史版本。

cuDNN 最新版本支持的 CUDA 查看:Support Matrix — NVIDIA cuDNN v9.3.0 documentation

在这里插入图片描述

查找 cuDNN 支持的 CUDA 的历史版本:

在这里插入图片描述

在这里插入图片描述

选择"cuDNN 8.x-1.x"

在这里插入图片描述

然后选择适应的版本下载deb包安装即可。

相关文章:

ubuntu 24.04 安装 Nvidia 显卡驱动 + CUDA + cuDNN,配置 AI 深度学习训练环境,简单易懂,一看就会!

ubuntu 24.04 安装 Nvidia 显卡驱动 CUDA cuDNN,配置 AI 深度学习训练环境,简单易懂,一看就会! 1.查看本机显卡型号 lspci | grep -i nvidia输出如下: 01:00.0 3D controller: NVIDIA Corporation GM108M [GeForc…...

跟李沐学AI:目标检测的常用算法

区域神经网络R-CNN 使用启发式搜索算法来选择锚框 -> 使用预训练模型来对每个锚框抽取特征 -> 训练一个SVM对类别进行分类 -> 训练一个线性回归模型来预测边缘框偏移 锚框大小不一,如何将不同的锚框统一为一个batch? -> 兴趣区域池化层 兴趣区域(RoI…...

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(一)---UnrealCV获取深度+分割图像

前言 本系列教程旨在使用UE5配置一个具备激光雷达深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程使用的环境: ubuntu 22.04 ros2 humblewindows11 UE5.4.3python8 本系列教程将涉及以…...

Java算法解析一:二分算法及其衍生出来的问题

这个算法的前提是,数组是升序排列的 算法描述: i和j是指针可以表示查找范围 m为中间值 当目标值targat比m大时,设置查找范围在m右边:i m-1 当目标值targat比m小时,设置查找范围在m左边:j m1 当targat的…...

数学建模预测类—【一元线性回归】

每日格言:行动是治愈恐惧的良药,而犹豫拖延将不断滋养恐惧. 目录 前言 一、什么是回归分析? 1.概念理解 2.分类和一般步骤 二、一元线性回归(Matlab算法) 1.利用regress函数 2、例题讲解 总结 前言 在具体讲述线性回归…...

配置更加美观的 Swagger UI

//注册Swagger服务 private static void AddSwaggerService(IServiceCollection services){services.AddSwaggerGen(opt >{opt.SwaggerDoc("Push", new OpenApiInfo{Version "v1",Title "Push API",Description "Push API 文档"…...

软件测试 - 基础(软件测试的生命周期、测试报告、bug的级别、与开发人员产生争执的调解方式)

一、软件测试的生命周期 测试贯穿软件的整个生命周期 软件测试的生命周期: 需求分析 →测试计划→ 测试设计、测试开发→ 测试执行→ 测试评估->上线->运行维护 需求分析:判断用户的需求是否合理,是否可实现 测试计划:计划项…...

RTX 4070 GDDR6显存曝光:性能与成本的平衡之选

近期,关于NVIDIA RTX 4070新显卡的信息曝光,这款显卡将配备较为缓慢的GDDR6显存,而非更高性能的GDDR6X。这一配置的选择引发了业内的广泛关注,特别是在性能与成本的平衡问题上。 新版RTX 4070 OC 2X的核心特点 **1.显存类型与带…...

canvas的基础使用

canvas的基础使用 一、画一条直线二、线的属性设置三、防止多次绘制的样式污染四、闭合五、快捷绘制矩形六、绘制圆形七、绘制文字八、绘制图片js版dom版图片截取 一、画一条直线 画一条直线需要用到三个方法&#xff1a;cxt.moveTo、cxt.lineTo、cxt.stroke <canvas id&qu…...

Windows 常用网络命令之 telnet(测试端口是否连通)

文章目录 1 概述1.1 启用 telnet 2 常用命令2.1 ping&#xff1a;测试网络是否连通2.2 telnet&#xff1a;测试端口是否连通 3 扩展3.1 进入 cmd 命令3.2 cls 清屏命令 1 概述 1.1 启用 telnet telnet ip:port // 格式 telnet 10.0.24.154:8001若出现上述提示&…...

x264 编码器像素运算系列:asd8函数

x264 编码器中像素间运算 在 x264 编码器中有多种像素间的运算,如下: sad 计算:SAD(Sum of Absolute Differences,绝对差值和)是一种在图像处理和视频编码中常用的度量,用于计算两个图像块之间的差异。SAD值越小,表示两个图像块越相似。hadamard_ac计算:用于计算Hadam…...

什么是AR、VR、MR、XR?

时代背景 近年来随着计算机图形学、显示技术等的发展&#xff0c;视觉虚拟化技术得到了广泛的发展&#xff0c;并且越来越普及化&#xff0c;慢慢的也走入人们的视野。目前市场上视觉虚拟化技术的主流分为这几种 VR、AR、MR、XR。这几项技术并不是最近才出现的&#xff0c;VR的…...

Epic Games 商店面向欧盟 iPhone 用户上线

Epic Games Store 终于在欧盟推出&#xff0c;为玩家提供了不通过 App Store 就能在 iPhone上访问游戏的途径。在经历了漫长而昂贵的关于支付和竞争对手应用程序店面的法律战&#xff0c;以及公证方面的麻烦之后&#xff0c;Epic Games 成功地为App Store 带来了一个数字店面。…...

【计算机毕设项目】2025级计算机专业小程序项目推荐 (小程序+后台管理)

以下项目选题适合计算机专业大部分专业&#xff0c;技术栈主要为&#xff1a;前端小程序&#xff0c;后端Java语言&#xff0c;数据库MySQL 后台免费获取源码&#xff0c;可提供远程调试、环境安装配置服务。&#xff08;文末有联系方式&#xff09; 以下是本次部分项目推荐1…...

Fast API + LangServe快速搭建 LLM 后台

如果快速搭建一个 LLM 后台 API&#xff0c;使前端可以快速接入 LLM API。LangChain 或者 LlamaIndex 架构都可以快速集成各种大语言模型&#xff0c;本文将讲述如何通过 Fast API LangServe 快速的搭建一个后台 Rest API 服务。LLM 这些框架现在主打一个就是快速&#xff0c;…...

CSS继承、盒子模型、float浮动、定位、diaplay

一、CSS继承 1.文字相关的样式会被子元素继承。 2.布局样式相关的不会被子元素继承。&#xff08;用inherit可以强行继承&#xff09; 实现效果&#xff1a; 二、盒子模型 每个标签都有一个盒子模型&#xff0c;有内容区、内边距、边框、外边距。 从内到外&#xff1a;cont…...

使用百度文心智能体创建AI旅游助手

百度文心智能体平台为你开启。百度文心智能体平台&#xff0c;创建属于自己的智能体应用。百度文心智能体平台是百度旗下的智能AI平台&#xff0c;集成了先进的自然语言处理技术和人工智能技术&#xff0c;可以用来创建属于自己的智能体应用&#xff0c;访问官网链接&#xff1…...

斗破C++编程入门系列之四:运算符和表达式

鸡啄米C 记住首页不迷路&#xff1a; http://www.jizhuomi.com/software/129.html 斗破观看顺序&#xff1a; https://v.haohuitao.cc/yhplay/336-1-2.html 第一季☞第二季前2集☞特别篇1☞第二季3&#xff5e;12集☞特别篇2沙之澜歌☞第三季☞第四季☞三年之约☞缘起☞年番…...

CVPR2024 | PromptAD: 仅使用正常样本进行小样本异常检测的学习提示

PromptAD: 仅使用正常样本进行小样本异常检测的学习提示 论文名称&#xff1a;PromptAD: Learning Prompts with only Normal Samples for Few-Shot Anomaly Detection 论文地址&#xff1a;https://arxiv.org/pdf/2404.05231 研究背景 异常检测&#xff08;Anomaly Detecti…...

文件批量上传,oss使用时间戳解决同名问题 以及一些sql bug

1.文件批量上传 ApiOperation(value "文件批量上传")PostMapping("/multipleImageUpload")Transactional(rollbackFor Exception.class)public Result multipleImageUpload(ApiParam(name "files",value "文件",required true) R…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...