当前位置: 首页 > news >正文

Hadoop之——WordCount案例与执行本地jar包

目录

一、WordCount代码

(一)WordCount简介

1.wordcount.txt

(二)WordCount的java代码

1.WordCountMapper

2.WordCountReduce

3.WordCountDriver

(三)IDEA运行结果

(四)Hadoop运行wordcount

1.在HDFS上新建一个文件目录

2.新建一个文件,并上传至该目录下

3.执行wordcount命令

4.查看运行结果

5.第二次提交报错原因

6.进入NodeManager查看

7.启动历史服务器(如果已经启动可以忽略此步骤)

8.查看历史服务信息

三、执行本地代码

(一)项目代码

1.stuscore.csv

2.Student类

2.StudentMapper类

4.StudentReduce类

5.StudentDriver类

(二)java代码中指定路径

1.maven项目编译并打包

2.上传stuscore.csv到hdfs指定目录下

3.xftp上传target目录下的打包好的jar包上传到虚拟机

4.Hadoop运行hadoopstu-1.0-SNAPSHOT.jar

5.Hadoop运行结果

(三)java代码中不指定路径

1.StuudentDriver类

2.重新编译打包上传

3.HDFS命令执行该jar包

4.查看运行结果


一、WordCount代码

(一)WordCount简介

WordCount是大数据经典案例,其逻辑就是有一个文本文件,通过编写java代码与Hadoop核心组件的操作,查询每个单词出现的频率。

1.wordcount.txt

hello java
hello hadoop
hello java hadoop
java hadoop
java hadoop
hadoop java
hello java

(二)WordCount的java代码

1.WordCountMapper

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;// Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
//                                         <0,"hello world","hello",1>
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {Text text = new Text();IntWritable intWritable = new IntWritable();@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {System.out.println("WordCount stage Key:"+key+" Value:"+value);String[] words = value.toString().split(" ");// "hello world" -->[hello,world]for (String word :words) {text.set(word);intWritable.set(1);context.write(text,intWritable);// 输出键值对 <hello,1><world,1>}}
}

2.WordCountReduce

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;// <KEYIN, VALUEIN, KEYOUT, VALUEOUT>
public class WordCountReduce extends Reducer<Text, IntWritable,Text, LongWritable> {@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {System.out.println("Reduce stage Key:"+key+" Values:"+values.toString());int count = 0;for (IntWritable intWritable :values) {count += intWritable.get();}
//        LongWritable longWritable = new LongWritable();
//        longWritable.set(count);LongWritable longWritable = new LongWritable(count);System.out.println("Key:"+key+" ResultValue:"+longWritable.get());context.write(key,longWritable);}
}

3.WordCountDriver

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class WordCountDriver {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);job.setJarByClass(WordCountDriver.class);// 设置mapper类job.setMapperClass(WordCountMapper.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);// 设置reduce类job.setReducerClass(WordCountReduce.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(LongWritable.class);// 指定map输入的文件路径FileInputFormat.setInputPaths(job,new Path("D:\\javaseprojects\\hadoopstu\\input\\demo1\\wordcount.txt"));// 指定reduce结果输出的文件路径Path path = new Path("D:\\javaseprojects\\hadoopstu\\output");FileSystem fileSystem = FileSystem.get(path.toUri(),configuration);if(fileSystem.exists(path)){fileSystem.delete(path,true);}FileOutputFormat.setOutputPath(job,path);job.waitForCompletion(true);
//        job.setJobName("");}
}

(三)IDEA运行结果

(四)Hadoop运行wordcount

1.在HDFS上新建一个文件目录

[root@lxm147 ~]# hdfs dfs -mkdir /inputpath
2023-02-10 23:05:40,098 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[root@lxm147 ~]# hdfs dfs -ls /
2023-02-10 23:05:52,217 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 3 items
drwxr-xr-x   - root supergroup          0 2023-02-08 08:06 /aa
drwxr-xr-x   - root supergroup          0 2023-02-10 10:52 /bigdata
drwxr-xr-x   - root supergroup          0 2023-02-10 23:05 /inputpath

2.新建一个文件,并上传至该目录下

[root@lxm147 mapreduce]# vim ./test.csv
[root@lxm147 mapreduce]# hdfs dfs -put ./test.csv /inputpath

3.执行wordcount命令

[root@lxm147 mapreduce]# hadoop jar ./hadoop-mapreduce-examples-3.1.3.jar wordcount /inputpath /outputpath

4.查看运行结果

(1)web端

(2)命令行

[root@lxm147 mapreduce]# hdfs dfs -cat /outputpath/part-r-00000
2023-02-10 23:26:06,276 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2023-02-10 23:26:07,793 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
hadoop	1
hello	2
java	2
javaweb	1
mybatis	2
spring	1

5.第二次提交报错原因

执行wordcount命令前删除/outpath目录下的文件再执行即可

6.进入NodeManager查看

http://lxm147:8088/cluster

7.启动历史服务器(如果已经启动可以忽略此步骤)

[root@lxm148 ~]# mr-jobhistory-daemon.sh start historyserver
WARNING: Use of this script to start the MR JobHistory daemon is deprecated.
WARNING: Attempting to execute replacement "mapred --daemon start" instead.
[root@lxm148 ~]# jps
4546 SecondaryNameNode
6370 JobHistoryServer
4164 NameNode
4804 ResourceManager
4937 NodeManager
6393 Jps
4302 DataNode

8.查看历史服务信息

http://lxm147:19888/

三、执行本地代码

(一)项目代码

1.stuscore.csv

1,zs,10,语文
2,ls,98,语文
3,ww,80,语文
1,zs,20,数学
2,ls,87,数学
3,ww,58,数学
1,zs,44,英语
2,ls,66,英语
3,ww,40,英语
1,zs,55,政治
2,ls,60,政治
3,ww,80,政治
1,zs,10,化学
2,ls,28,化学
3,ww,78,化学
1,zs,87,生物
2,ls,9,生物
3,ww,10,生物 

2.Student类

import org.apache.hadoop.io.WritableComparable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;public class Student implements WritableComparable<Student> {private long stuid;private String stuname;private int score;private String lession;@Overridepublic int compareTo(Student o) {return this.score > o.score ? 1 : 0;}@Overridepublic void write(DataOutput dataOutput) throws IOException {dataOutput.writeLong(stuid);dataOutput.writeUTF(stuname);dataOutput.writeUTF(lession);dataOutput.writeInt(score);}@Overridepublic void readFields(DataInput dataInput) throws IOException {this.stuid = dataInput.readLong();this.stuname = dataInput.readUTF();this.lession = dataInput.readUTF();this.score = dataInput.readInt();}@Overridepublic String toString() {return "Student{" +"stuid=" + stuid +", stuname='" + stuname + '\'' +", score=" + score +", lession='" + lession + '\'' +'}';}public long getStuid() {return stuid;}public void setStuid(long stuid) {this.stuid = stuid;}public String getStuname() {return stuname;}public void setStuname(String stuname) {this.stuname = stuname;}public int getScore() {return score;}public void setScore(int score) {this.score = score;}public String getLession() {return lession;}public void setLession(String lession) {this.lession = lession;}public Student(long stuid, String stuname, int score, String lession) {this.stuid = stuid;this.stuname = stuname;this.score = score;this.lession = lession;}public Student() {}
}

2.StudentMapper类

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;// K=id,V=student
// Mapper<进来的K,进来的V,出去的K,出去的V>
public class StudentMapper extends Mapper<LongWritable, Text, LongWritable, Student> {@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, LongWritable, Student>.Context context) throws IOException, InterruptedException {System.out.println(key+"   "+value.toString());String[] split = value.toString().split(",");LongWritable stuidKey = new LongWritable(Long.parseLong(split[2]));Student studentValue = new Student(Long.parseLong(split[0]), split[1], Integer.parseInt(split[2]),split[3]);context.write(stuidKey,studentValue);}
}

4.StudentReduce类

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class StudentReduce extends Reducer<LongWritable, Student, Student, NullWritable> {@Overrideprotected void reduce(LongWritable key, Iterable<Student> values, Reducer<LongWritable, Student, Student, NullWritable>.Context context) throws IOException,InterruptedException {Student stu = new Student();// 相同key相加
//        int sum = 0;int max = 0;String name ="";String lession = "";
//        for (Student student:
//             values) {
//            sum += student.getScore();
//            name = student.getStuname();
//        }// 求每门科目的最高分for (Student student :values) {if(max<=student.getScore()){max = student.getScore();name = student.getStuname();lession = student.getLession();}}stu.setStuid(key.get());stu.setScore(max);stu.setStuname(name);stu.setLession(lession);System.out.println(stu.toString());context.write(stu,NullWritable.get());}
}

5.StudentDriver类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class StudentDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);job.setJarByClass(StudentDriver.class);job.setMapperClass(StudentMapper.class);job.setMapOutputKeyClass(LongWritable.class);job.setMapOutputValueClass(Student.class);job.setReducerClass(StudentReduce.class);job.setOutputKeyClass(Student.class);job.setOutputValueClass(NullWritable.class);// 指定路径FileInputFormat.setInputPaths(job,new Path("hdfs://lxm147:9000/bigdata/in/demo2/stuscore.csv"));Path path = new Path("hdfs://lxm147:9000/bigdata/out2");// 不指定路径/* Path inpath = new Path(args[0]);FileInputFormat.setInputPaths(job, inpath);Path path = new Path(args[1]);*/FileSystem fs = FileSystem.get(path.toUri(), configuration);if (fs.exists(path)) {fs.delete(path, true);}FileOutputFormat.setOutputPath(job, path);job.waitForCompletion(true);}
}

(二)java代码中指定路径

1.maven项目编译并打包

分别双击compile和package

2.上传stuscore.csv到hdfs指定目录下

hdfs dfs -put /opt/stuscore.csv /bigdata/in/demo2

3.xftp上传target目录下的打包好的jar包上传到虚拟机

4.Hadoop运行hadoopstu-1.0-SNAPSHOT.jar

[root@lxm147 opt]# hadoop jar ./hadoopstu-1.1.0-SNAPSHOT.jar nj.zb.kb21.demo2.StudentDriver /bigdata/in/demo2/stuscore.csv /bigdata/out2

5.Hadoop运行结果

(三)java代码中不指定路径

1.StuudentDriver类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class StudentDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);job.setJarByClass(StudentDriver.class);job.setMapperClass(StudentMapper.class);job.setMapOutputKeyClass(LongWritable.class);job.setMapOutputValueClass(Student.class);job.setReducerClass(StudentReduce.class);job.setOutputKeyClass(Student.class);job.setOutputValueClass(NullWritable.class);// 指定路径/*FileInputFormat.setInputPaths(job,new Path("hdfs://lxm147:9000/bigdata/in/demo2/stuscore.csv"));Path path = new Path("hdfs://lxm147:9000/bigdata/out2");*/// 不指定路径Path inpath = new Path(args[0]);FileInputFormat.setInputPaths(job, inpath);Path path = new Path(args[1]);FileSystem fs = FileSystem.get(path.toUri(), configuration);if (fs.exists(path)) {fs.delete(path, true);}FileOutputFormat.setOutputPath(job, path);job.waitForCompletion(true);}
}

2.重新编译打包上传

为了方便区分,这里修改版本号再重新编译打包

3.HDFS命令执行该jar包

[root@lxm147 opt]# hadoop jar ./hadoopstu-1.1.0-SNAPSHOT.jar nj.zb.kb21.demo2.StudentDriver /bigdata/in/demo2/stuscore.csv /bigdata/out

4.查看运行结果

[root@lxm147 opt]# hdfs dfs -cat /bigdata/out/part-r-00000
Student{stuid=1, stuname='zs', score=226}
Student{stuid=2, stuname='ls', score=348}
Student{stuid=3, stuname='ww', score=346}

相关文章:

Hadoop之——WordCount案例与执行本地jar包

目录 一、WordCount代码 (一)WordCount简介 1.wordcount.txt (二)WordCount的java代码 1.WordCountMapper 2.WordCountReduce 3.WordCountDriver (三)IDEA运行结果 (四)Hadoop运行wordcount 1.在HDFS上新建一个文件目录 2.新建一个文件&#xff0c;并上传至该目录下…...

利用git reflog 命令来查看历史提交记录,并使用提交记录恢复已经被删除掉的分支

一.问题描述 当我们在操作中手误删除了某个分支&#xff0c;那该分支中提交的内容也没有了&#xff0c;我们可以利用git reflog这个命令来查看历史提交的记录从而恢复被删除的分支和提交的内容 二.模拟问题 1.创建git仓库&#xff0c;并提交一个文件 [rootcentos7-temp /da…...

【软件测试】大厂测试开发你真的了解吗?测试开发养成记......

目录&#xff1a;导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09;前言 在一些大公司里&…...

Redis中的hash结构和扩容机制

1.rehash原理 hash包含两个数据结构为字典数组ht[0]和ht[1]。其中ht[0]用来存放数据&#xff0c;ht[1]在rehash时使用。 扩容时&#xff0c;ht[1]的大小为第一个大于等于ht[0].used*2的2的幂次方的数&#xff1b; 收缩时&#xff0c;ht[1]的大小为第一个大于等于ht[0].used的…...

【C++奇技淫巧】前置自增与后置自增的区别(++i,i++)【2023.02.08】

简介 先说i和i的区别&#xff0c;判断语句中if(i)是拿i的值先判断&#xff0c;而后自增&#xff1b;if(i)是先自增i再进行判断。涉及到左值与右值也有点区别&#xff0c;i返回的是右值&#xff0c;i返回的是左值。也就是下面的代码要解释的东西。 #include <iostream>i…...

实战打靶集锦-005-HL

**写在前面&#xff1a;**记录一次曲折的打靶经历。 目录1. 主机发现2. 端口扫描3. 服务枚举4. 服务探查4.1 浏览器访问4.2 目录枚举4.3 探查admin4.4 探查index4.5 探查login5 公共EXP搜索6. 再次目录枚举6.1 探查superadmin.php6.2 查看页面源代码6.3 base64绕过6.4 构建反弹…...

铁路系统各专业介绍(车机工电辆)

目录 1 车务段 1.1 职能简介 1.2 路段名单 1.3 岗位级别 2 机务段 2.1 职能简介 2.2 路段名单 2.3 岗位级别 3 工务段 3.1 职能简介 3.2 路段名单 3.3 岗位级别 4 电务段 4.1 职能简介 4.2 路段名单 4.3 岗位级别 5 车辆段 5.1 职能简介 5.2 路段名单 5.3 …...

2/11考试总结

时间安排 7:30–7:50 读题&#xff0c;T1貌似是个 dp &#xff0c;T2 数据结构&#xff0c;T3 可能是数据结构。 7:50–9:45 T1&#xff0c;点规模非常大&#xff0c;可以达到 1e18 级别&#xff0c;感觉应该没法直接做&#xff0c;考虑每条新增的边的贡献&#xff0c;想到用 …...

Java Set集合

7 Set集合 7.1 Set集合的概述和特点 Set集合的特点 不包含重复元素的集合没有带索引的方法&#xff0c;所以不能使用普通for循环 Set集合是接口通过实现类实例化&#xff08;多态的形式&#xff09; HashSet&#xff1a;添加的元素是无序&#xff0c;不重复&#xff0c;无索引…...

【手写 Vuex 源码】第七篇 - Vuex 的模块安装

一&#xff0c;前言 上一篇&#xff0c;主要介绍了 Vuex 模块收集的实现&#xff0c;主要涉及以下几个点&#xff1a; Vuex 模块的概念&#xff1b;Vuex 模块和命名空间的使用&#xff1b;Vuex 模块收集的实现-构建“模块树”&#xff1b; 本篇&#xff0c;继续介绍 Vuex 模…...

EOC第六章《块与中枢派发》

文章目录第37条&#xff1a;理解block这一概念第38条&#xff1a;为常用的块类型创建typedef第39条&#xff1a;用handler块降低代码分散程度第41条&#xff1a;多用派发队列&#xff0c;少用同步锁方案一&#xff1a;使用串行同步队列来将读写操作都安排到同一个队列里&#x…...

八、Git远程仓库操作——跨团队成员的协作

前言 前面一篇博文介绍了git团队成员之间的协作&#xff0c;现在在介绍下如果是跨团队成员的话&#xff0c;如何协作&#xff1f; 跨团队成员协作&#xff0c;其实就是你不属于那个项目的成员&#xff0c;你没有权限向那个仓库提交代码。但是github还有另一种 pull request&a…...

算法刷题打卡第88天:字母板上的路径

字母板上的路径 难度&#xff1a;中等 我们从一块字母板上的位置 (0, 0) 出发&#xff0c;该坐标对应的字符为 board[0][0]。 在本题里&#xff0c;字母板为board ["abcde", "fghij", "klmno", "pqrst", "uvwxy", "…...

UVa The Morning after Halloween 万圣节后的早晨 双向BFS

题目链接&#xff1a;The Morning after Halloween 题目描述&#xff1a; 给定一个二维矩阵&#xff0c;图中有障碍物和字母&#xff0c;你需要把小写字母移动到对应的大写字母位置&#xff0c;不同的小写字母可以同时移动&#xff08;上下左右四个方向或者保持不动 &#xff0…...

Connext DDS属性配置参考大全(3)

Transport传输dds.participant.logging.time_based_logging.process_received_messagedds.participant.logging.time_based_logging.process_received_message.timeout...

Docker-安装Jenkins-使用jenkins发版Java项目

文章目录0.前言环境背景1.操作流程1.1前期准备工作1.1.1环境变量的配置1.2使用流水线的方式进行发版1.2.1新建流水线任务1.2.2流水线操作工具tools步骤stages步骤1:拉取代码编译步骤2:发送文件并启动0.前言 学海无涯&#xff0c;旅“途”漫漫&#xff0c;“途”中小记&#xff…...

spring 中的 Bean 是否线程安全

文章目录结论1、spring中的Bean从哪里来&#xff1f;2、spring中什么样的Bean存在线程安全问题&#xff1f;3、如何处理spring Bean的线程安全问题&#xff1f;结论 其实&#xff0c;Spring 中的 Bean 是否线程安全&#xff0c;其实跟 Spring 容器本身无关。Spring框架中没有提…...

微电网两阶段鲁棒优化经济调度方法[3]【升级优化版本】(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️❤️&#x1f4a5;&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑…...

C++入门教程||C++ 数据类型||C++ 变量类型

C 数据类型 使用编程语言进行编程时&#xff0c;需要用到各种变量来存储各种信息。变量保留的是它所存储的值的内存位置。这意味着&#xff0c;当您创建一个变量时&#xff0c;就会在内存中保留一些空间。 您可能需要存储各种数据类型&#xff08;比如字符型、宽字符型、整型…...

【visio使用技巧】图片导出pdf时去掉多余空白

问题 在visio导出pdf格式的图片时&#xff0c;往往会存在多余的白边&#xff0c;如下图所示&#xff1a; 解决方法 依次点击&#xff1a;菜单栏→文件→选项→自定义功能区→勾选“开发工具”→确定。 依次点击菜单栏→开发工具→显示ShapeSheet→页→Print Properties→将…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...