Hadoop之——WordCount案例与执行本地jar包
目录
一、WordCount代码
(一)WordCount简介
1.wordcount.txt
(二)WordCount的java代码
1.WordCountMapper
2.WordCountReduce
3.WordCountDriver
(三)IDEA运行结果
(四)Hadoop运行wordcount
1.在HDFS上新建一个文件目录
2.新建一个文件,并上传至该目录下
3.执行wordcount命令
4.查看运行结果
5.第二次提交报错原因
6.进入NodeManager查看
7.启动历史服务器(如果已经启动可以忽略此步骤)
8.查看历史服务信息
三、执行本地代码
(一)项目代码
1.stuscore.csv
2.Student类
2.StudentMapper类
4.StudentReduce类
5.StudentDriver类
(二)java代码中指定路径
1.maven项目编译并打包
2.上传stuscore.csv到hdfs指定目录下
3.xftp上传target目录下的打包好的jar包上传到虚拟机
4.Hadoop运行hadoopstu-1.0-SNAPSHOT.jar
5.Hadoop运行结果
(三)java代码中不指定路径
1.StuudentDriver类
2.重新编译打包上传
3.HDFS命令执行该jar包
4.查看运行结果
一、WordCount代码
(一)WordCount简介
WordCount是大数据经典案例,其逻辑就是有一个文本文件,通过编写java代码与Hadoop核心组件的操作,查询每个单词出现的频率。
1.wordcount.txt
hello java hello hadoop hello java hadoop java hadoop java hadoop hadoop java hello java
(二)WordCount的java代码
1.WordCountMapper
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;// Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
// <0,"hello world","hello",1>
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {Text text = new Text();IntWritable intWritable = new IntWritable();@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException {System.out.println("WordCount stage Key:"+key+" Value:"+value);String[] words = value.toString().split(" ");// "hello world" -->[hello,world]for (String word :words) {text.set(word);intWritable.set(1);context.write(text,intWritable);// 输出键值对 <hello,1><world,1>}}
}
2.WordCountReduce
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;// <KEYIN, VALUEIN, KEYOUT, VALUEOUT>
public class WordCountReduce extends Reducer<Text, IntWritable,Text, LongWritable> {@Overrideprotected void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {System.out.println("Reduce stage Key:"+key+" Values:"+values.toString());int count = 0;for (IntWritable intWritable :values) {count += intWritable.get();}
// LongWritable longWritable = new LongWritable();
// longWritable.set(count);LongWritable longWritable = new LongWritable(count);System.out.println("Key:"+key+" ResultValue:"+longWritable.get());context.write(key,longWritable);}
}
3.WordCountDriver
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class WordCountDriver {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);job.setJarByClass(WordCountDriver.class);// 设置mapper类job.setMapperClass(WordCountMapper.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);// 设置reduce类job.setReducerClass(WordCountReduce.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(LongWritable.class);// 指定map输入的文件路径FileInputFormat.setInputPaths(job,new Path("D:\\javaseprojects\\hadoopstu\\input\\demo1\\wordcount.txt"));// 指定reduce结果输出的文件路径Path path = new Path("D:\\javaseprojects\\hadoopstu\\output");FileSystem fileSystem = FileSystem.get(path.toUri(),configuration);if(fileSystem.exists(path)){fileSystem.delete(path,true);}FileOutputFormat.setOutputPath(job,path);job.waitForCompletion(true);
// job.setJobName("");}
}
(三)IDEA运行结果
(四)Hadoop运行wordcount
1.在HDFS上新建一个文件目录
[root@lxm147 ~]# hdfs dfs -mkdir /inputpath
2023-02-10 23:05:40,098 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[root@lxm147 ~]# hdfs dfs -ls /
2023-02-10 23:05:52,217 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 3 items
drwxr-xr-x - root supergroup 0 2023-02-08 08:06 /aa
drwxr-xr-x - root supergroup 0 2023-02-10 10:52 /bigdata
drwxr-xr-x - root supergroup 0 2023-02-10 23:05 /inputpath
2.新建一个文件,并上传至该目录下
[root@lxm147 mapreduce]# vim ./test.csv
[root@lxm147 mapreduce]# hdfs dfs -put ./test.csv /inputpath
3.执行wordcount命令
[root@lxm147 mapreduce]# hadoop jar ./hadoop-mapreduce-examples-3.1.3.jar wordcount /inputpath /outputpath
4.查看运行结果
(1)web端
(2)命令行
[root@lxm147 mapreduce]# hdfs dfs -cat /outputpath/part-r-00000
2023-02-10 23:26:06,276 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2023-02-10 23:26:07,793 INFO sasl.SaslDataTransferClient: SASL encryption trust check: localHostTrusted = false, remoteHostTrusted = false
hadoop 1
hello 2
java 2
javaweb 1
mybatis 2
spring 1
5.第二次提交报错原因
执行wordcount命令前删除/outpath目录下的文件再执行即可
6.进入NodeManager查看
http://lxm147:8088/cluster
7.启动历史服务器(如果已经启动可以忽略此步骤)
[root@lxm148 ~]# mr-jobhistory-daemon.sh start historyserver
WARNING: Use of this script to start the MR JobHistory daemon is deprecated.
WARNING: Attempting to execute replacement "mapred --daemon start" instead.
[root@lxm148 ~]# jps
4546 SecondaryNameNode
6370 JobHistoryServer
4164 NameNode
4804 ResourceManager
4937 NodeManager
6393 Jps
4302 DataNode
8.查看历史服务信息
http://lxm147:19888/
三、执行本地代码
(一)项目代码
1.stuscore.csv
1,zs,10,语文 2,ls,98,语文 3,ww,80,语文 1,zs,20,数学 2,ls,87,数学 3,ww,58,数学 1,zs,44,英语 2,ls,66,英语 3,ww,40,英语 1,zs,55,政治 2,ls,60,政治 3,ww,80,政治 1,zs,10,化学 2,ls,28,化学 3,ww,78,化学 1,zs,87,生物 2,ls,9,生物 3,ww,10,生物
2.Student类
import org.apache.hadoop.io.WritableComparable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;public class Student implements WritableComparable<Student> {private long stuid;private String stuname;private int score;private String lession;@Overridepublic int compareTo(Student o) {return this.score > o.score ? 1 : 0;}@Overridepublic void write(DataOutput dataOutput) throws IOException {dataOutput.writeLong(stuid);dataOutput.writeUTF(stuname);dataOutput.writeUTF(lession);dataOutput.writeInt(score);}@Overridepublic void readFields(DataInput dataInput) throws IOException {this.stuid = dataInput.readLong();this.stuname = dataInput.readUTF();this.lession = dataInput.readUTF();this.score = dataInput.readInt();}@Overridepublic String toString() {return "Student{" +"stuid=" + stuid +", stuname='" + stuname + '\'' +", score=" + score +", lession='" + lession + '\'' +'}';}public long getStuid() {return stuid;}public void setStuid(long stuid) {this.stuid = stuid;}public String getStuname() {return stuname;}public void setStuname(String stuname) {this.stuname = stuname;}public int getScore() {return score;}public void setScore(int score) {this.score = score;}public String getLession() {return lession;}public void setLession(String lession) {this.lession = lession;}public Student(long stuid, String stuname, int score, String lession) {this.stuid = stuid;this.stuname = stuname;this.score = score;this.lession = lession;}public Student() {}
}
2.StudentMapper类
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;// K=id,V=student
// Mapper<进来的K,进来的V,出去的K,出去的V>
public class StudentMapper extends Mapper<LongWritable, Text, LongWritable, Student> {@Overrideprotected void map(LongWritable key, Text value, Mapper<LongWritable, Text, LongWritable, Student>.Context context) throws IOException, InterruptedException {System.out.println(key+" "+value.toString());String[] split = value.toString().split(",");LongWritable stuidKey = new LongWritable(Long.parseLong(split[2]));Student studentValue = new Student(Long.parseLong(split[0]), split[1], Integer.parseInt(split[2]),split[3]);context.write(stuidKey,studentValue);}
}
4.StudentReduce类
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class StudentReduce extends Reducer<LongWritable, Student, Student, NullWritable> {@Overrideprotected void reduce(LongWritable key, Iterable<Student> values, Reducer<LongWritable, Student, Student, NullWritable>.Context context) throws IOException,InterruptedException {Student stu = new Student();// 相同key相加
// int sum = 0;int max = 0;String name ="";String lession = "";
// for (Student student:
// values) {
// sum += student.getScore();
// name = student.getStuname();
// }// 求每门科目的最高分for (Student student :values) {if(max<=student.getScore()){max = student.getScore();name = student.getStuname();lession = student.getLession();}}stu.setStuid(key.get());stu.setScore(max);stu.setStuname(name);stu.setLession(lession);System.out.println(stu.toString());context.write(stu,NullWritable.get());}
}
5.StudentDriver类
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class StudentDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);job.setJarByClass(StudentDriver.class);job.setMapperClass(StudentMapper.class);job.setMapOutputKeyClass(LongWritable.class);job.setMapOutputValueClass(Student.class);job.setReducerClass(StudentReduce.class);job.setOutputKeyClass(Student.class);job.setOutputValueClass(NullWritable.class);// 指定路径FileInputFormat.setInputPaths(job,new Path("hdfs://lxm147:9000/bigdata/in/demo2/stuscore.csv"));Path path = new Path("hdfs://lxm147:9000/bigdata/out2");// 不指定路径/* Path inpath = new Path(args[0]);FileInputFormat.setInputPaths(job, inpath);Path path = new Path(args[1]);*/FileSystem fs = FileSystem.get(path.toUri(), configuration);if (fs.exists(path)) {fs.delete(path, true);}FileOutputFormat.setOutputPath(job, path);job.waitForCompletion(true);}
}
(二)java代码中指定路径
1.maven项目编译并打包
分别双击compile和package
2.上传stuscore.csv到hdfs指定目录下
hdfs dfs -put /opt/stuscore.csv /bigdata/in/demo2
3.xftp上传target目录下的打包好的jar包上传到虚拟机
4.Hadoop运行hadoopstu-1.0-SNAPSHOT.jar
[root@lxm147 opt]# hadoop jar ./hadoopstu-1.1.0-SNAPSHOT.jar nj.zb.kb21.demo2.StudentDriver /bigdata/in/demo2/stuscore.csv /bigdata/out2
5.Hadoop运行结果
(三)java代码中不指定路径
1.StuudentDriver类
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;public class StudentDriver {public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {Configuration configuration = new Configuration();Job job = Job.getInstance(configuration);job.setJarByClass(StudentDriver.class);job.setMapperClass(StudentMapper.class);job.setMapOutputKeyClass(LongWritable.class);job.setMapOutputValueClass(Student.class);job.setReducerClass(StudentReduce.class);job.setOutputKeyClass(Student.class);job.setOutputValueClass(NullWritable.class);// 指定路径/*FileInputFormat.setInputPaths(job,new Path("hdfs://lxm147:9000/bigdata/in/demo2/stuscore.csv"));Path path = new Path("hdfs://lxm147:9000/bigdata/out2");*/// 不指定路径Path inpath = new Path(args[0]);FileInputFormat.setInputPaths(job, inpath);Path path = new Path(args[1]);FileSystem fs = FileSystem.get(path.toUri(), configuration);if (fs.exists(path)) {fs.delete(path, true);}FileOutputFormat.setOutputPath(job, path);job.waitForCompletion(true);}
}
2.重新编译打包上传
为了方便区分,这里修改版本号再重新编译打包
3.HDFS命令执行该jar包
[root@lxm147 opt]# hadoop jar ./hadoopstu-1.1.0-SNAPSHOT.jar nj.zb.kb21.demo2.StudentDriver /bigdata/in/demo2/stuscore.csv /bigdata/out
4.查看运行结果
[root@lxm147 opt]# hdfs dfs -cat /bigdata/out/part-r-00000
Student{stuid=1, stuname='zs', score=226}
Student{stuid=2, stuname='ls', score=348}
Student{stuid=3, stuname='ww', score=346}
相关文章:
Hadoop之——WordCount案例与执行本地jar包
目录 一、WordCount代码 (一)WordCount简介 1.wordcount.txt (二)WordCount的java代码 1.WordCountMapper 2.WordCountReduce 3.WordCountDriver (三)IDEA运行结果 (四)Hadoop运行wordcount 1.在HDFS上新建一个文件目录 2.新建一个文件,并上传至该目录下…...
利用git reflog 命令来查看历史提交记录,并使用提交记录恢复已经被删除掉的分支
一.问题描述 当我们在操作中手误删除了某个分支,那该分支中提交的内容也没有了,我们可以利用git reflog这个命令来查看历史提交的记录从而恢复被删除的分支和提交的内容 二.模拟问题 1.创建git仓库,并提交一个文件 [rootcentos7-temp /da…...
【软件测试】大厂测试开发你真的了解吗?测试开发养成记......
目录:导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜)前言 在一些大公司里&…...
Redis中的hash结构和扩容机制
1.rehash原理 hash包含两个数据结构为字典数组ht[0]和ht[1]。其中ht[0]用来存放数据,ht[1]在rehash时使用。 扩容时,ht[1]的大小为第一个大于等于ht[0].used*2的2的幂次方的数; 收缩时,ht[1]的大小为第一个大于等于ht[0].used的…...
【C++奇技淫巧】前置自增与后置自增的区别(++i,i++)【2023.02.08】
简介 先说i和i的区别,判断语句中if(i)是拿i的值先判断,而后自增;if(i)是先自增i再进行判断。涉及到左值与右值也有点区别,i返回的是右值,i返回的是左值。也就是下面的代码要解释的东西。 #include <iostream>i…...
实战打靶集锦-005-HL
**写在前面:**记录一次曲折的打靶经历。 目录1. 主机发现2. 端口扫描3. 服务枚举4. 服务探查4.1 浏览器访问4.2 目录枚举4.3 探查admin4.4 探查index4.5 探查login5 公共EXP搜索6. 再次目录枚举6.1 探查superadmin.php6.2 查看页面源代码6.3 base64绕过6.4 构建反弹…...
铁路系统各专业介绍(车机工电辆)
目录 1 车务段 1.1 职能简介 1.2 路段名单 1.3 岗位级别 2 机务段 2.1 职能简介 2.2 路段名单 2.3 岗位级别 3 工务段 3.1 职能简介 3.2 路段名单 3.3 岗位级别 4 电务段 4.1 职能简介 4.2 路段名单 4.3 岗位级别 5 车辆段 5.1 职能简介 5.2 路段名单 5.3 …...
2/11考试总结
时间安排 7:30–7:50 读题,T1貌似是个 dp ,T2 数据结构,T3 可能是数据结构。 7:50–9:45 T1,点规模非常大,可以达到 1e18 级别,感觉应该没法直接做,考虑每条新增的边的贡献,想到用 …...
Java Set集合
7 Set集合 7.1 Set集合的概述和特点 Set集合的特点 不包含重复元素的集合没有带索引的方法,所以不能使用普通for循环 Set集合是接口通过实现类实例化(多态的形式) HashSet:添加的元素是无序,不重复,无索引…...
【手写 Vuex 源码】第七篇 - Vuex 的模块安装
一,前言 上一篇,主要介绍了 Vuex 模块收集的实现,主要涉及以下几个点: Vuex 模块的概念;Vuex 模块和命名空间的使用;Vuex 模块收集的实现-构建“模块树”; 本篇,继续介绍 Vuex 模…...
EOC第六章《块与中枢派发》
文章目录第37条:理解block这一概念第38条:为常用的块类型创建typedef第39条:用handler块降低代码分散程度第41条:多用派发队列,少用同步锁方案一:使用串行同步队列来将读写操作都安排到同一个队列里&#x…...
八、Git远程仓库操作——跨团队成员的协作
前言 前面一篇博文介绍了git团队成员之间的协作,现在在介绍下如果是跨团队成员的话,如何协作? 跨团队成员协作,其实就是你不属于那个项目的成员,你没有权限向那个仓库提交代码。但是github还有另一种 pull request&a…...
算法刷题打卡第88天:字母板上的路径
字母板上的路径 难度:中等 我们从一块字母板上的位置 (0, 0) 出发,该坐标对应的字符为 board[0][0]。 在本题里,字母板为board ["abcde", "fghij", "klmno", "pqrst", "uvwxy", "…...
UVa The Morning after Halloween 万圣节后的早晨 双向BFS
题目链接:The Morning after Halloween 题目描述: 给定一个二维矩阵,图中有障碍物和字母,你需要把小写字母移动到对应的大写字母位置,不同的小写字母可以同时移动(上下左右四个方向或者保持不动 ࿰…...
Connext DDS属性配置参考大全(3)
Transport传输dds.participant.logging.time_based_logging.process_received_messagedds.participant.logging.time_based_logging.process_received_message.timeout...
Docker-安装Jenkins-使用jenkins发版Java项目
文章目录0.前言环境背景1.操作流程1.1前期准备工作1.1.1环境变量的配置1.2使用流水线的方式进行发版1.2.1新建流水线任务1.2.2流水线操作工具tools步骤stages步骤1:拉取代码编译步骤2:发送文件并启动0.前言 学海无涯,旅“途”漫漫,“途”中小记ÿ…...
spring 中的 Bean 是否线程安全
文章目录结论1、spring中的Bean从哪里来?2、spring中什么样的Bean存在线程安全问题?3、如何处理spring Bean的线程安全问题?结论 其实,Spring 中的 Bean 是否线程安全,其实跟 Spring 容器本身无关。Spring框架中没有提…...
微电网两阶段鲁棒优化经济调度方法[3]【升级优化版本】(Matlab代码实现)
💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑…...
C++入门教程||C++ 数据类型||C++ 变量类型
C 数据类型 使用编程语言进行编程时,需要用到各种变量来存储各种信息。变量保留的是它所存储的值的内存位置。这意味着,当您创建一个变量时,就会在内存中保留一些空间。 您可能需要存储各种数据类型(比如字符型、宽字符型、整型…...
【visio使用技巧】图片导出pdf时去掉多余空白
问题 在visio导出pdf格式的图片时,往往会存在多余的白边,如下图所示: 解决方法 依次点击:菜单栏→文件→选项→自定义功能区→勾选“开发工具”→确定。 依次点击菜单栏→开发工具→显示ShapeSheet→页→Print Properties→将…...
Rust语言之Option枚举类型
概述 Option是Rust语言设计中最重要的枚举类型之一,它编码了其它语言中空值与非空值的概念,差异在于,Rust不会允许你像其它语言一样以非空值的方式来使用一个空值,这避免了很多错误。Option在标准库中的定义如下: pu…...
基于TimeQuest时序优化原理和方法
💡 回顾基于RTL逻辑时序优化的基本思路,在关键路径中插入寄存器来优化时序 分析最坏路径 通过前面对TimeQuest软件的理解,基本上可以找到关键路径,此文章主要对关键路径时序进行优化,使设计达到时序要求,以…...
LeetCode第332场周赛
2023.2.12LeetCode第332场周赛 6354. 找出数组的串联值 思路 双指针模拟,两个指针相遇的时候要特判 算法 class Solution { public:long long findTheArrayConcVal(vector<int>& nums) {long long ans 0;int i 0, j nums.size() - 1;while (i <…...
2023-2-12刷题情况
字母板上的路径 题目描述 我们从一块字母板上的位置 (0, 0) 出发,该坐标对应的字符为 board[0][0]。 在本题里,字母板为board [“abcde”, “fghij”, “klmno”, “pqrst”, “uvwxy”, “z”],如下所示。 我们可以按下面的指令规则行动…...
拉普拉斯矩阵
拉普拉斯算子 Δff(xi1,yj)f(xi−1,yj)f(xi,yj1)f(xi,yj−1)−4f(xi,yj)∑(k,l)∈N(i,j)(f(xk,yl)−f(xi,yj))\begin{aligned} \Delta f & f\left(x_{i1}, y_j\right) f\left(x_{i-1},y_j\right) f\left(x_i,y_{j1}\right)f\left(x_i,y_{j-1}\right) - 4f\left(x_i,y_j\r…...
Top-1错误率、Top-5错误率等常见的模型算法评估指标解析
Top-1 错误率:指预测输出的概率最高的类别与人工标注的类别相符的准确率,就是你预测的label取最后概率向量里面最大的那一个作为预测结果,如过你的预测结果中概率最大的那个分类正确,则预测正确,否则预测错误。比如预测…...
Urho3D 容器类型
Urho3D实现了自己的字符串类型和模板容器,而不是使用STL。其基本原理如下: 在某些情况下提高了性能,例如使用PODVector类时。保证字符串和容器的二进制大小,以允许例如嵌入Variant对象内。减少了编译时间。直接命名和实现&#x…...
C语言学习笔记(四): 循环结构程序设计
while语句 定义 While语句是C语言中的循环语句,它按条件循环执行语句,直到条件不满足为止 语法格式如下: while(condition) {//循环体内容; }使用实例 求123…100 include <stdio.h> int main(){int i 1, sum 0;while (i<100){sum i …...
02 OpenCV图像通道处理
1 通道提取与合并 在数字图像处理中,图像通道是指一个图像中的颜色信息被分离为不同的颜色分量。常见的图像通道包括RGB通道、灰度通道、HSV通道等。 RGB通道是指将图像分离为红色、绿色和蓝色三个颜色通道,每个通道表示相应颜色的亮度。这种方式是最常…...
微信小程序图书馆座位预约管理系统
开发工具:IDEA、微信小程序服务器:Tomcat9.0, jdk1.8项目构建:maven数据库:mysql5.7前端技术:vue、uniapp服务端技术:springbootmybatis本系统分微信小程序和管理后台两部分,项目采用…...
北京企业网站建设价格/阿里云搜索
通过上面pt-table-checksums找到了这些不一致的数据表(https://blog.51cto.com/li02yu/2340403),如何同步数据呢?即如何修复MySQL主从不一致的数据,让他们保持一致性呢?利用另外一个工具 pt-table-sync。使…...
苏州模板建站哪家好/微博关键词排名优化
几种常见的基于比较的排序方式 排序简介 这些排序都给了示例图,可能没有视频那么生动,但图片也有视频没有的好处,那就是读者可以仔细斟酌每一处的细节,接下来让我们来感受排序算法的魅力吧! 交换排序 1.冒泡排序 思想…...
wordpress成员资格/seo营销技巧培训班
动画 Android系统框架提供了两种动画系统:属性动画和View动画。属性动画更加灵活,可以提供更多特性,因而优先选择属性动画。除了这两个,还有Drawable动画,它可以加载图片资源,一张一张地展示。 属性动画 …...
做时时彩网站微信平台/域名备案查询系统
oracle 设置日期的默认值 1.修改日期字段的默认值为但前系统的时间: alter table 表名 modify 日期字段 DATE default sysdate not null ; 2.修改日期字段的默认值为指定的时间:我们使用 to_date(2003-12-19,yyyy-mm-dd) to_date(2003-12-17 0…...
网站开发软件有哪些/百度seo查询系统
mount命令 可以使用mount命令挂载光 盘镜像文件、移动硬盘、U盘以及Windows 网络共享和UNIX NFS网络共享等 软件包管理 rpm deb yum yum常用命令 yum list 查询服务器上所有可用的软件包 yum search 搜索服务器上的软件包...
wordpress搜索功能加强/直播回放老卡怎么回事
PHP文章摘要生成方法(函数)文章生成摘要的方法有多种,可以用JS在客户端生成,也可以在服务器端生成,当然更不排除在数据库中加一个摘要字段,在发布文章的时候自行设置。以下是在服务器端生成时的方法。我们在写BLOG时经常需要显示文…...