当前位置: 首页 > news >正文

FLINK 分流

在Apache Flink中,分流(Stream Splitting)是指将一条数据流拆分成完全独立的两条或多条流的过程。这通常基于一定的筛选条件,将符合条件的数据拣选出来并放入对应的流中。以下是关于Flink分流的详细解释:

一、分流方式

在这里插入图片描述

Flink提供了多种分流方式,以满足不同的数据处理需求:

  1. 基于filter的分流:
    • 这是最直接的分流方式,通过多次调用.filter()方法,将符合不同条件的数据筛选出来,形成不同的流。
    • 例如,可以将一个整数数据流拆分为奇数流和偶数流。
  2. 基于split的分流(已废弃):
    • 在早期的Flink版本中,.split()方法允许用户根据条件将数据流拆分为多个流。
    • 但由于该方法限制了数据类型转换,且随着Flink的发展,更灵活和高效的分流方式(如侧输出流)被引入,因此.split()方法已被废弃。
  3. 基于侧输出流(Side Output)的分流:
    • 侧输出流是Flink提供的一种更灵活和高效的分流方式。
    • 它允许用户在处理函数(如.process())中,根据条件将数据输出到不同的侧输出流中。
    • 使用侧输出流时,需要先定义输出标签(OutputTag),然后在处理函数中通过ctx.output()方法将数据写入对应的侧输出流。
    • 最后,可以通过getSideOutput()方法从侧输出流中获取数据。

三、内部机制

  1. 数据流的拆分:
    • 当数据流通过分流操作时,Flink会根据用户定义的筛选条件或处理函数,将数据元素分发到不同的子流中。
    • 这个过程通常是在Flink的算子(如filter算子、process算子)内部实现的,算子会根据输入数据的属性和条件来决定数据元素的去向。
  2. 子流的独立性:
    • 一旦数据流被拆分成多个子流,这些子流在后续的处理中就是相互独立的。
    • 用户可以对每个子流进行独立的操作和处理,如转换、聚合、窗口计算等。
  3. 资源的分配和调度:
    • Flink会根据任务的并行度和资源情况,动态地分配和调度资源来处理这些子流。
    • 这确保了每个子流都能得到足够的资源来处理数据,并且能够在满足性能要求的同时,尽可能地提高系统的吞吐量和效率。

四、应用场景

分流在Flink中有着广泛的应用场景,包括但不限于:

  • 数据路由:根据数据的某些属性(如用户ID、地区等)将数据路由到不同的处理路径上。
  • 异常检测:将正常数据和异常数据分开处理,以便对异常数据进行更详细的分析和处理。
  • 数据过滤:从原始数据流中筛选出符合特定条件的数据进行进一步处理。
  • 多版本处理:在处理数据升级或迁移时,将旧版本数据和新版本数据分开处理。

五、示例

1. filter分流

基于整数的奇偶性进行分流

import org.apache.flink.api.common.functions.FilterFunction;  
import org.apache.flink.streaming.api.datastream.DataStream;  
import org.apache.flink.streaming.api.datastream.DataStreamSource;  
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;  
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;  public class FlinkFilterSplitExample {  public static void main(String[] args) throws Exception {  // 创建Flink执行环境  StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();  // 从Socket接收数据流(这里假设Socket发送的是整数数据)  DataStreamSource<String> socketStream = env.socketTextStream("localhost", 9999);  // 将字符串数据流转换为整数数据流  SingleOutputStreamOperator<Integer> intStream = socketStream.map(Integer::valueOf);  // 使用filter算子进行分流:偶数流和奇数流  SingleOutputStreamOperator<Integer> evenStream = intStream.filter(new FilterFunction<Integer>() {  @Override  public boolean filter(Integer value) throws Exception {  return value % 2 == 0;  }  });  SingleOutputStreamOperator<Integer> oddStream = intStream.filter(new FilterFunction<Integer>() {  @Override  public boolean filter(Integer value) throws Exception {  return value % 2 != 0;  }  });  // 打印偶数流和奇数流  evenStream.print("Even Stream: ");  oddStream.print("Odd Stream: ");  // 执行Flink程序  env.execute("Flink Filter Split Example");  }  
}

说明:

  1. 创建执行环境:首先,我们创建了一个Flink的执行环境StreamExecutionEnvironment。
  2. 接收数据流:通过env.socketTextStream(“localhost”, 9999),我们从本地的9999端口接收一个文本数据流。这里假设发送的是整数数据的字符串表示。
  3. 数据类型转换:使用map算子,我们将接收到的字符串数据流转换为整数数据流。
  4. 分流操作:
    • 使用filter算子,我们根据整数的奇偶性将数据流拆分为偶数流和奇数流。
    • evenStream包含所有偶数,oddStream包含所有奇数。
  5. 打印结果:最后,我们使用print算子打印偶数流和奇数流的结果。
  6. 执行程序:通过调用env.execute(),我们启动了Flink程序。

2. split分流(已废弃)

基于传感器温度的split分流

import org.apache.flink.api.common.functions.OutputSelector;  
import org.apache.flink.streaming.api.datastream.DataStream;  
import org.apache.flink.streaming.api.datastream.DataStreamSplit;  
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;  
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;  // 传感器数据类  
class SensorReading {  String deviceNo;  long timestamp;  double temperature;  // 构造函数、getter和setter方法省略  
}  public class FlinkSplitExample {  public static void main(String[] args) throws Exception {  // 创建Flink执行环境  StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();  // 假设有一个数据源,这里使用一个简单的示例数据源  SingleOutputStreamOperator<SensorReading> sensorStream = env.fromElements(  new SensorReading("device1", 1610035289736L, 84.3),  new SensorReading("device2", 1610035371758L, 38.8),  // ... 其他传感器数据  );  // 使用split算子进行分流  DataStreamSplit<SensorReading> splitStream = sensorStream.split(new OutputSelector<SensorReading>() {  @Override  public Iterable<String> select(SensorReading sensorReading) {  ArrayList<String> output = new ArrayList<>();  if (sensorReading.temperature > 70.0) {  output.add("high");  } else {  output.add("low");  }  return output;  }  });  // 从SplitStream中选择出高温流和低温流  DataStream<SensorReading> highTempStream = splitStream.select("high");  DataStream<SensorReading> lowTempStream = splitStream.select("low");  // 打印结果  highTempStream.print("High Temperature Stream: ");  lowTempStream.print("Low Temperature Stream: ");  // 执行Flink程序  env.execute("Flink Split Example");  }  
}

3. 侧输出流(Side Output)分流

基于整数的奇偶性进行分流

import org.apache.flink.api.common.typeinfo.Types;  
import org.apache.flink.streaming.api.datastream.DataStream;  
import org.apache.flink.streaming.api.datastream.DataStreamSource;  
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;  
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;  
import org.apache.flink.streaming.api.functions.ProcessFunction;  
import org.apache.flink.util.Collector;  
import org.apache.flink.util.OutputTag;  
import org.apache.flink.api.common.functions.FilterFunction;  public class SplitStreamByOutputTag {  // 定义输出标签  private static final OutputTag<Integer> evenTag = new OutputTag<Integer>("even") {};  private static final OutputTag<Integer> oddTag = new OutputTag<Integer>("odd") {};  public static void main(String[] args) throws Exception {  // 创建Flink上下文环境  StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();  env.setParallelism(1);  // Source  DataStreamSource<String> dataStreamSource = env.socketTextStream("localhost", 8888);  // Transform  SingleOutputStreamOperator<Integer> mapResult = dataStreamSource.map(input -> {  int i = Integer.parseInt(input);  return i;  });  // Process and split  SingleOutputStreamOperator<Integer> processedStream = mapResult.process(new ProcessFunction<Integer, Integer>() {  @Override  public void processElement(Integer value, Context ctx, Collector<Integer> out) throws Exception {  if (value % 2 == 0) {  ctx.output(evenTag, value);  } else {  ctx.output(oddTag, value);  }  // 注意:这里不向主输出流输出任何数据,所有数据都通过侧输出流输出。  // 如果需要同时向主输出流输出数据,可以在else分支中添加 out.collect(value);  }  });  // 获取侧输出流并打印  DataStream<Integer> evenStream = processedStream.getSideOutput(evenTag);  DataStream<Integer> oddStream = processedStream.getSideOutput(oddTag);  evenStream.print("Even Stream: ");  oddStream.print("Odd Stream: ");  // 执行  env.execute();  }  
}

相关文章:

FLINK 分流

在Apache Flink中&#xff0c;分流&#xff08;Stream Splitting&#xff09;是指将一条数据流拆分成完全独立的两条或多条流的过程。这通常基于一定的筛选条件&#xff0c;将符合条件的数据拣选出来并放入对应的流中。以下是关于Flink分流的详细解释&#xff1a; 一、分流方式…...

从零开始:构建一个高效的开源管理系统——使用 React 和 Ruoyi-Vue-Plus 的实战指南

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...

windows下pycharm社区版2024下载与安装(包含新建第一个工程)

windows下pycharm社区版2024下载与安装 下载pycharm pycharm官网 安装pycharm 1.进入官网 pycharm官网 下载 点击Download–>右侧Other versions 下载对应的社区版&#xff08;如下图&#xff09;&#xff1a;下载网址 2.点击运行下载好的安装包 点击下一步 3.更改pychar…...

重构案例:将纯HTML/JS项目迁移到Webpack

我们已经了解了许多关于 Webpack 的知识&#xff0c;但要完全熟练掌握它并非易事。一个很好的学习方法是通过实际项目练习。当我们对 Webpack 的配置有了足够的理解后&#xff0c;就可以尝试重构一些项目。本次我选择了一个纯HTML/JS的PC项目进行重构&#xff0c;项目位于 GitH…...

表格编辑demo

<el-form :model"form" :rules"status ? rules : {}" ref"form" class"form-container" :inline"true"><el-table :data"tableData"><el-table-column label"计算公式"><templat…...

企业自建邮件系统选U-Mail ,功能强大、安全稳定

在现代企业运营中&#xff0c;电子邮件扮演着至关重要的角色&#xff0c;随着企业规模的增长和业务的多样化&#xff0c;传统的租用第三方企业邮箱服务逐渐显现出其局限性。例如&#xff0c;存储空间受限、数据安全风险、缺乏灵活的管理和备份功能&#xff0c;以及无法与其他企…...

蓝桥杯题目理解

1. 一维差分 1.1. 小蓝的操作 1.1.1. 题目解析&#xff1a; 这道题提到了对于“区间”进行操作&#xff0c;而差分数列就是对于区间进行操作的好方法。 观察差分数列&#xff1a; 给定数列&#xff1a;1 3 5 2 7 1 差分数列&#xff1a;1 2 2 -3 5 6 题目要求把原数组全部…...

浪潮云启操作系统(InLinux)bcache缓存实践:理解OpenStack环境下虚拟机卷、Ceph OSD、bcache设备之间的映射关系

前言 在OpenStack平台上&#xff0c;采用bcache加速ceph分布式存储的方案被广泛用于企业和云环境。一方面&#xff0c;Ceph作为分布式存储系统&#xff0c;与虚拟机存储卷紧密结合&#xff0c;可以提供高可用和高性能的存储服务。另一方面&#xff0c;bcache作为混合存储方案&…...

通过ssh端口反向通道建立并实现linux系统的xrdp以及web访问

Content 1 问题描述2 原因分析3 解决办法3.1 安装x11以及gnome桌面环境查看是否安装x11否则使用下面指令安装x11组件查看是否安装gnome否则使用下面指令安装gnome桌面环境 3.2 安装xrdp使用下面指令安装xrdp&#xff08;如果安装了则跳过&#xff09;启动xrdp服务 3.3 远程服务…...

# 渗透测试#安全见闻8 量子物理面临的安全挑战

# 渗透测试#安全见闻8 量子物理面临的安全挑战 ##B站陇羽Sec## 量子计算原理与技术 量子计算是一种基于量子力学原理的计算方式&#xff0c;它利用量子位&#xff08;qubits&#xff09;来进行信息处理和计算…...

【rabbitmq】实现问答消息消费示例

目录 1. 说明2. 截图2.1 接口调用截图2.2 项目结构截图 3. 代码示例 1. 说明 1.实现的是一个简单的sse接口&#xff0c;单向的长连接&#xff0c;后端可以向前端不断输出数据。2.通过调用sse接口&#xff0c;触发rabbitmq向队列塞消息&#xff0c;向前端返回一个sseEmitter对象…...

单片机_RTOS__架构概念

经典单片机程序 void main() {while(1){函数1&#xff08;&#xff09;&#xff1b;函数2&#xff08;&#xff09;&#xff1b;}} 有无RTOS区别 裸机 RTOS RTOS程序 喂饭&#xff08;&#xff09; {while&#xff08;1&#xff09;{喂一口饭&#xff08;&#xff09;;} } …...

ClickHouse在百度MEG数据中台的落地和优化

导读 百度MEG上一代大数据产品存在平台分散、质量不均和易用性差等问题&#xff0c;导致开发效率低下、学习成本高&#xff0c;业务需求响应迟缓。为了解决这些问题&#xff0c;百度MEG内部开发了图灵3.0生态系统&#xff0c;包括Turing Data Engine(TDE)计算引擎、Turing Dat…...

B/S架构(Browser/Server)与C/S架构(Client/Server)

基本概念 B/S架构&#xff08;Browser/Server&#xff09;&#xff1a;即浏览器/服务器架构。在这种架构中&#xff0c;用户通过浏览器&#xff08;如Chrome、Firefox、Safari等&#xff09;访问服务器上的应用程序。服务器端负责处理业务逻辑、存储数据等核心功能&#xff0c;…...

idea中自定义注释模板语法

文章目录 idea 自定义模板语法1.自定义模板语法是什么&#xff1f;2.如何在idea中设置呢&#xff1f; idea 自定义模板语法 1.自定义模板语法是什么&#xff1f; 打开我的idea&#xff0c;创建一个测试类&#xff1a; 这里看到我的 test 测试类里面会有注释&#xff0c;这是怎…...

基于SSM的儿童教育网站【附源码】

基于SpringBoot的课程作业管理系统&#xff08;源码L文说明文档&#xff09; 目录 4 系统设计 4.1 系统概述 4.2 系统模块设计 4.3.3 数据库表设计 5 系统实现 5.1 管理员功能模块的实现 5.1.1 视频列表 5.1.2 文章信息管理 5.1.3 文章类…...

深挖自闭症病因与孩子表现的关联

自闭症&#xff0c;亦称为孤独症&#xff0c;乃是一种对儿童发展有着严重影响的神经发育障碍性疾病。深入探寻自闭症的病因与孩子表现之间的联系&#xff0c;对于更深刻地理解并助力自闭症儿童而言&#xff0c;可谓至关重要。 当前&#xff0c;自闭症的病因尚未完全明晰&#x…...

[网络协议篇] UDP协议

文章目录 1. 简介2. 特点3. UDP数据报结构4. 基于UDP的应用层协议5. UDP安全性问题6. 使用udp传输数据的系统就一定不可靠吗&#xff1f;7. 基于UDP的主机探活 python实现 1. 简介 User Datagram Protocol&#xff0c;用户数据报协议&#xff0c;基于IP协议提供面向无连接的网…...

关系型数据库(1)----MySQL(初阶)

目录 1.mysql 2.mysqld 3.mysql架构 1.连接层 2.核心服务层 3.存储引擎层 4.数据存储层 4.SQL分类 5.MySQL操作库 6.MySQL数据类型 1. 数值类型 2. 日期和时间类型 3. 字符串类型 4. 空间类型 5. JSON数据类型 7.MySQL表的约束 1. 主键约束&#xff08;PRIMARY…...

计算机毕业设计Python+大模型租房推荐系统 租房大屏可视化 租房爬虫 hadoop spark 58同城租房爬虫 房源推荐系统

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 用到的技术: 1. python…...

深度学习技术演进:从 CNN、RNN 到 Transformer 的发展与原理解析

深度学习的技术演进经历了从卷积神经网络&#xff08;CNN&#xff09;到循环神经网络&#xff08;RNN&#xff09;再到 Transformer 的重要发展。这三个架构分别擅长处理图像、序列数据和多种任务的特征&#xff0c;标志着深度学习在不同领域取得的进步。 1. 卷积神经网络&…...

Lua中的goto语句

软考鸭微信小程序 过软考,来软考鸭! 提供软考免费软考讲解视频、题库、软考试题、软考模考、软考查分、软考咨询等服务 在Lua编程语言中&#xff0c;goto语句是一种跳转语句&#xff0c;用于将程序的执行流程无条件地转移到程序中的另一个位置。这个位置由一个标签&#xff08;…...

【rust实战】rust博客系统2_使用wrap启动rust项目服务

如何创建一个使用warp框架的rust项目1.使用cargo 创建项目 cargo new blog 2.添加warp依赖 1.cd blog 2.编辑Cargo.toml文件 添加warp 和 tokio 作为依赖项 在[dependencies]中添加 [package] name "blog" version "0.1.0" …...

【实战案例】Django框架使用模板渲染视图页面及异常处理

本文基于之前内容列表如下&#xff1a; 【图文指引】5分钟搭建Django轻量级框架服务 【实战案例】Django框架基础之上编写第一个Django应用之基本请求和响应 【实战案例】Django框架连接并操作数据库MySQL相关API 视图概述 Django中的视图的概念是一类具有相同功能和模板的网…...

设置K8s管理节点异常容忍时间

说明 每个节点上的 kubelet 需要定时向 apiserver 上报当前节点状态&#xff0c;如果两者间网络异常导致心跳终端&#xff0c;kube-controller-manager 中的 NodeController 会将该节点标记为 Unknown 或 Unhealthy&#xff0c;持续一段时间异常状态后 kube-controller-manage…...

什么样的JSON编辑器才好用

简介 JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;易于人阅读和编写&#xff0c;同时也便于机器解析和生成。随着互联网和应用程序的快速发展&#xff0c;JSON已经成为数据传输和存储的主要格式之一。在处理和编辑JSON数据…...

ArkUI自定义TabBar组件

在ArkUI中的Tabs&#xff0c;通过页签进行内容视图切换的容器组件&#xff0c;每个页签对应一个内容视图。其中内容是图TabContent作为Tabs的自组件&#xff0c;通过给TabContent设置tabBar属性来自定义导航栏样式。现在我们就根据UI设计的效果图来实现下图效果&#xff1a; 根…...

pair类型应用举例

在main.cpp里输入程序如下&#xff1a; #include <iostream> //使能cin(),cout(); #include <utility> //使能pair数据类型; #include <string> //使能string字符串; #include <stdlib.h> //使能exit(); //pair类型可以将两个相同的或不同类…...

数字 图像处理算法的形式

一 基本功能形式 按图像处理的输出形式&#xff0c;图像处理的基本功能可分为三种形式。 1&#xff09;单幅图像 单幅图像 2&#xff09;多幅图像 单幅图像 3&#xff09;单&#xff08;或多&#xff09;幅图像 数字或符号等 二 几种具体算法形式 1.局部处理邻域对于任一…...

安徽对口高考Python试题选:输入一个正整数,然后输出该整数的3的幂数相加形式。

第一步&#xff1a;求出3的最高次幂是多少 guoint(input("请输入一个正整数:")) iguo a0 while i>0: if 3**i<guo: ai break ii-1print(a)#此语句为了看懂题目&#xff0c;题目中不需要打印出最高幂数 第二步…...

win10做的网站其他电脑访问不了怎么办/查关键词的排名工具

题目传送门 题意&#xff1a;一个置换群&#xff0c;经过最少k次置换后还原。问给一个N个元素&#xff0c;在所有的置换群里&#xff0c;有多少个不同的k。 分析&#xff1a;这道题可以转化成&#xff1a;N Σ ai &#xff0c;求LCM ( ai )有多少个不同的值。比如N10时&#x…...

网站使用字体/快速百度

Ext.isEmpty( Mixed value, [Boolean allowBlank] ) 用法 (2011-01-17 15:58:52) 转载▼标签&#xff1a; 杂谈 Ext类&#xff1a; isEmpty( Mixed value, [Boolean allowBlank] ) : Boolean 返回true&#xff0c;如果传递进来的值为null、undefined或者一个空的字符串。…...

wordpress 网站迁移/代刷网站推广链接免费

...

长治网站设计制作网站/seo的中文名是什么

云计算主要是通过网络&#xff0c;将IT以抽象化的方式交付给客户&#xff0c;为基于IT的服务交付模式带来巨大变革&#xff0c;云计算的独特优势&#xff1a;大规模资源池化、资源弹性、按需分配、自动化部署、高可靠性、高运营效率及技术和IT的高透明度。 云计算平台的实现主要…...

网上的彩票网站是怎么做的/推广公司好做吗

1. 等价类划分 常见的软件测试面试题划分等价类: 等价类是指某个输入域的子集合.在该子集合中,各个输入数据对于揭露程序中的错误都是等效的.并合理地假定:测试某等价类的代表值就等于对这一类其它值的测试.因此,可以把全部输入数据合理划分为假设干等价类,在每一个等价类中取一…...

dreamweaver网站制作/浙江短视频seo优化网站

为什么80%的码农都做不了架构师&#xff1f;>>> 1、Redis 丰富的数据结构&#xff08;Data Structures&#xff09; 字符串&#xff08;String&#xff09; Redis字符串能包含任意类型的数据 一个字符串类型的值最多能存储512M字节的内容 利用INCR命令簇&#xff0…...