当前位置: 首页 > news >正文

.NET 一款二进制文件转换Shellcode的工具

01阅读须知

此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失,均由使用者本人负责。本文所提供的工具仅用于学习,禁止用于其他方面

02基本介绍

Sharp4GenShellCode.exe 是一个用于将二进制文件(如 loader.bin)转换为 Shellcode 的工具。在渗透测试和红队操作中,Shellcode 经常被用作攻击载体,用于在目标系统上实现远程代码执行或提权等目的。

图片

03使用方法

Sharp4GenShellCode使用非常简单,工具的基本用法如下所示。

Sharp4GenShellCode.exe "D:\\test\\loader.bin" 1.txt

在上述命令中D:\\test\\loader.bin" 是要转换的二进制文件路径,1.txt 是保存转换后的 Shellcode 的输出文件,如下图所示。

执行完该命令后,工具会将二进制文件 loader.bin 转换成一个标准的 Shellcode 格式并将其保存在 1.txt 文件中,转换后的内容类似如下所示。

byte[] buf = new byte[35285] {0xE8,0xC0,0x27,0x00,0x00,0xC0,0x27,0x00,0x00,0x9C,0xB9,0x42,0xFE,0x47,0xF4,0x57,0xBF,0x50,0xBE,0x1B,0x53,0xF2,0xFA,0x79,0x41,0x7A,0xF6,0x9D,0x1F,0xB2,0x37,0xF7,0xEA,0xBD,0x57,0xFA,0x6D,0x70,0xA8,0x6B,0xEF,0x00,0x00,0x00,0x00,...
};

生成的 Shellcode 可以被直接嵌入到代码中,例如在.NET环境中,可以通过 P/Invoke 结合 Windows API 函数(如 VirtualAlloc 和 CreateThread)将 Shellcode 写入内存并执行。

byte[] buf = new byte[35285] {0xE8, 0xC0, 0x27, 0x00, 0x00, 0xC0, 0x27, 0x00, 0x00, 0x9C, 0xB9, 0x42, 0xFE, 0x47, 0xF4,...
};
IntPtr addr = VirtualAlloc(IntPtr.Zero, (uint)buf.Length, 0x1000 /* MEM_COMMIT */, 0x40 /* PAGE_EXECUTE_READWRITE */);
Marshal.Copy(buf, 0, addr, buf.Length);
IntPtr hThread = CreateThread(IntPtr.Zero, 0, addr, IntPtr.Zero, 0, IntPtr.Zero);
WaitForSingleObject(hThread, 0xFFFFFFFF);

图片

综上,Sharp4GenShellCode 是一个非常实用的工具,它能够将任意的二进制文件转换为 Shellcode,方便在渗透测试、漏洞利用或恶意软件开发中使用。

04.NET安全知识库

图片

图片

星球文化20+个专题栏目涵盖了点、线、面、体等知识面!其中主题包括.NET Tricks、漏洞分析、内存马、代码审计、预编译、反序列化、webshell免杀、命令执行、C#工具库等等。

图片

图片

相关文章:

.NET 一款二进制文件转换Shellcode的工具

01阅读须知 此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失&#xf…...

【CSS】——基础入门常见操作

阿华代码,不是逆风,就是我疯 你们的点赞收藏是我前进最大的动力!! 希望本文内容能够帮助到你!! 目录 一:CSS引入 二:CSS对元素进行美化 1:style修饰 2:选…...

LuaJIT源码分析(五)词法分析

LuaJIT源码分析(五)词法分析 lua虽然是脚本语言,但在执行时,还是先将脚本编译成字节码,然后再由虚拟机解释执行。在编译脚本时,首先需要对源代码进行词法分析,把源代码分解为token流。lua的toke…...

005 匿名信

005 匿名信 题目描述 电视剧《分界线》里面有一个片段,男主为了向警察透露案件细节,且不暴露自己,于是将报刊上的字剪下来,剪拼成一封匿名信。现在有一名举报人,希望借鉴这种方式,使用英文报刊完成举报操…...

聊聊Web3D 发展趋势

随着 Web 技术的不断演进,Web3D 正逐渐成为各行业数字化的重要方向。Web3D 是指在网页中展示 3D 内容的技术集合。近年来,由于 WebGL、WebGPU 等技术的发展,3D 内容已经能够直接在浏览器中渲染,为用户提供更加沉浸、互动的体验。以…...

【数据结构与算法】LeetCode: 贪心算法

文章目录 LeetCode: 贪心算法买卖股票的最佳时机 (Hot100)买卖股票的最佳时机 II跳跃游戏 (Hot100)跳跃游戏 II(Hot100)划分字母区间 (Hot100)分发饼干K次取反后最大化的…...

Date 日期类的实现(c++)

本文用c实现日期类 将会实现以下函数 bool operator<(const Date& d);bool operator<(const Date& d);bool operator>(const Date& d);bool operator>(const Date& d);bool operator(const Date& d);bool operator!(const Date& d);Date&…...

智能家居10G雷达感应开关模块,飞睿智能uA级别低功耗、超高灵敏度,瞬间响应快

在当今科技飞速发展的时代&#xff0c;智能家居已经逐渐成为人们生活中不可或缺的一部分。从智能灯光控制到智能家电的联动&#xff0c;每一个细节都在为我们的生活带来便利和舒适。而在众多智能家居产品中&#xff0c;10G 雷达感应开关模块以其独特的优势&#xff0c;正逐渐成…...

头歌——人工智能(机器学习 --- 决策树2)

文章目录 第5关&#xff1a;基尼系数代码 第6关&#xff1a;预剪枝与后剪枝代码 第7关&#xff1a;鸢尾花识别代码 第5关&#xff1a;基尼系数 基尼系数 在ID3算法中我们使用了信息增益来选择特征&#xff0c;信息增益大的优先选择。在C4.5算法中&#xff0c;采用了信息增益率…...

一七一、React性能优化方式

在 React 中进行性能优化可以通过多种手段来减少渲染次数、优化渲染效率并减少内存消耗。以下是常见的性能优化方法及示例&#xff1a; 1. shouldComponentUpdate shouldComponentUpdate 是类组件中的生命周期方法&#xff0c;它可以让组件在判断是否需要重新渲染时&#xff…...

编写dockerfile生成镜像,并且构建容器运行

编写dockerfile生成镜像&#xff0c;并且构建容器运行 目录 编写dockerfile生成镜像&#xff0c;并且构建容器运行 概述 一、dockerfile文件详解 Dockerfile的基本结构 Dockerfile的常用指令 二、构建过程 概述 随着微服务应用越来越多&#xff0c;大家需要尽快掌握dock…...

Java项目练习——学生管理系统

1. 整体结构 代码实现了基本的学生管理系统功能&#xff0c;包括登录、注册、忘记密码、添加、删除、修改和查询学生信息。 使用了ArrayList来存储用户和学生信息。 使用了Scanner类来处理用户输入。 2. 主要功能模块 登录 (logIn)&#xff1a;验证用户名和密码&#xff0c;…...

sqlserver、达梦、mysql的差异

差异项sqlserver达梦mysql单行注释---- 1、-- &#xff0c;--后面带个空格 2、# 包裹对象名称&#xff0c;如表、表字段等 [tableName] "tableName"tableName表字段自增IDENTITY(1, 1)IDENTITY(1, 1)AUTO_INCREMENT二进制数据类型IMAGEIMAGE、BLOBBLOB 存储一个汉字需…...

Spring AOP(定义、使用场景、用法、3种事务、事务失效场景及解决办法、面试题)

目录 1. AOP定义&#xff1f; 2.常见的AOP使用场景&#xff1a; 3.Spring AOP用法 3.1 Spring AOP中的几个核心概念 3.1.1 切面、切点、通知、连接点 3.1.2 切点表达式AspectJ 3.2 使用 Spring AOP 的步骤总结 3.2.1 添加依赖: 3.2.2 定义切面和切点&#xff08;切点和…...

Flutter鸿蒙next 封装对话框详解

✅近期推荐&#xff1a;求职神器 https://bbs.csdn.net/topics/619384540 &#x1f525;欢迎大家订阅系列专栏&#xff1a;flutter_鸿蒙next &#x1f4ac;淼学派语录&#xff1a;只有不断的否认自己和肯定自己&#xff0c;才能走出弯曲不平的泥泞路&#xff0c;因为平坦的大路…...

【项目实战】通过LLaMaFactory+Qwen2-VL-2B微调一个多模态医疗大模型

前言 随着多模态大模型的发展&#xff0c;其不仅限于文字处理&#xff0c;更能够在图像、视频、音频方面进行识别与理解。医疗领域中&#xff0c;医生们往往需要对各种医学图像进行处理&#xff0c;以辅助诊断和治疗。如果将多模态大模型与图像诊断相结合&#xff0c;那么这会…...

SCSI驱动与 UFS 驱动交互概况

SCSI子系统概况 SCSI&#xff08;Small Computer System Interface&#xff09;子系统是 Linux 中的一个模块化框架&#xff0c;用于提供与存储设备的通用接口。通过 SCSI 子系统&#xff0c;可以支持不同类型的存储协议&#xff08;如 UFS、SATA、SAS&#xff09;&#xff0c…...

软件工程实践项目:人事管理系统

一、项目的需求说明 通过移动设备登录app提供简单、方便的操作。根据公司原来的考勤管理制度&#xff0c;为公司不同管理层次提供相应的权限功能。通过app上面的各种标准操作&#xff0c;考勤管理无纸化的实现&#xff0c;使公司的考勤管理更加科学规范&#xff0c;从而节省考…...

不使用三方软件,win系统下禁止单个应用联网能力的详细操作教程

本篇文章主要讲解&#xff0c;在win系统环境下&#xff0c;禁止某个应用联网能力的详细操作教程&#xff0c;通过本教程您可以快速掌握自定义对单个程序联网能力的限制和禁止。 作者&#xff1a;任聪聪 日期&#xff1a;2024年10月30日 步骤一、按下win按键&#xff08;四个小方…...

近似线性可分支持向量机的原理推导

近似线性可分的意思是训练集中大部分实例点是线性可分的&#xff0c;只是一些特殊实例点的存在使得这种数据集不适用于直接使用线性可分支持向量机进行处理&#xff0c;但也没有到完全线性不可分的程度。所以近似线性可分支持向量机问题的关键就在于这些少数的特殊点。 相较于…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

Python常用模块:time、os、shutil与flask初探

一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...