当前位置: 首页 > news >正文

人工智能-深度学习-Torch框架-手动构建回归流程

from sklearn.datasets import make_regression
import math
import random
import torch
  • from sklearn.datasets import make_regression: 导入make_regression函数,用于生成回归数据集。

  • import math: 导入math模块,用于进行数学计算,例如向上取整。

  • import random: 导入random模块,用于随机打乱数据集。

  • import torch: 导入torch库,用于张量操作和神经网络训练。

构建数据集

def build_data():'''构建数据集'''noise = 14.6#噪声n_sample = 1000#样本数量X,y,coef = make_regression(n_samples=n_sample,n_features=4,coef=True)X = torch.tensor(X,dtype=torch.float64,requires_grad=True)y = torch.tensor(y,dtype=torch.float64,requires_grad=True)return X,y,coef
  • def build_data():: 定义一个名为build_data的函数,用于构建数据集。

  • noise = 14.6: 设置噪声水平为14.6,用于生成带有噪声的数据。

  • n_sample = 1000: 设置样本数量为1000,用于生成1000个样本。

  • X, y, coef = make_regression(n_samples=n_sample, n_features=4, coef=True): 使用make_regression生成回归数据集,包含1000个样本和4个特征,并返回真实系数。

  • X = torch.tensor(X, dtype=torch.float64, requires_grad=True): 将生成的特征矩阵X转换为PyTorch张量,数据类型为torch.float64,并设置requires_grad=True以启用梯度计算。

  • y = torch.tensor(y, dtype=torch.float64, requires_grad=True): 将生成的目标向量y转换为PyTorch张量,数据类型为torch.float64,并设置requires_grad=True以启用梯度计算。

  • return X, y, coef: 返回特征矩阵X、目标向量y和真实系数coef

构建数据加载器

def data_loader(x,y):'''数据加载器'''#配置参数batch_size = 16#一个批次的数量n_sample = x.shape[0]#len(x)长度n_batches = math.ceil(n_sample/batch_size)#一轮的训练次数index = [i for i in range(n_sample)]random.shuffle(index)for i in range(0,n_batches):indexs = index[i*batch_size:min((i+1)*batch_size,n_sample)]yield x[indexs],y[indexs]
  • def data_loader(x, y):: 定义一个名为data_loader的函数,用于加载数据。

  • batch_size = 16: 设置每个批次的样本数量为16,用于控制每次训练的样本数量。

  • n_sample = x.shape[0]: 获取样本数量,用于计算批次数量。

  • n_batches = math.ceil(n_sample / batch_size): 计算每轮的批次数量,使用math.ceil向上取整,确保所有样本都能被处理。

  • index = [i for i in range(n_sample)]: 创建一个包含所有样本索引的列表,用于随机打乱样本顺序。

  • random.shuffle(index): 打乱样本索引,以随机化样本顺序,避免训练过程中的顺序偏差。

  • for i in range(0, n_batches):: 遍历每个批次,确保每个批次都能被处理。

  • indexs = index[i * batch_size:min((i + 1) * batch_size, n_sample)]: 获取当前批次的索引,确保最后一个批次也能被处理。

  • yield x[indexs], y[indexs]: 返回当前批次的特征矩阵和目标向量,使用yield生成一个生成器,用于按需加载数据。

构建模型函数

def myregreser(x,w,b):return x@w+b#一个容器中装着的是每一条样本数据的预测值

x@w+b  跟  y = x*w+b差不多,无需多言哈

  • def myregreser(x, w, b):: 定义一个名为myregreser的函数,用于计算线性回归模型的预测值。

  • return x @ w + b: 返回预测值,使用矩阵乘法@计算xw的乘积,然后加上偏置b,实现线性回归模型.

构建损失函数

def MSE(y_pred,y_true):return torch.mean((y_pred-y_true)**2)
  • def MSE(y_pred, y_true):: 定义一个名为MSE的函数,用于计算均方误差(MSE)损失。

  • return torch.mean((y_pred - y_true) ** 2): 返回预测值和真实值之间的均方误差,用于衡量模型的预测精度。

把参数初始化

def  initialize(n_featrue):torch.manual_seed(666)w = torch.randn(n_featrue,requires_grad=True,dtype=torch.float64)# print(w)b = torch.tensor(14.5,requires_grad=True,dtype=torch.float64)return w,b
  • def initialize(n_feature):: 定义一个名为initialize的函数,用于初始化模型参数。

  • torch.manual_seed(666): 设置随机种子为666,以确保结果可重复,避免随机性带来的不确定性。

  • w = torch.randn(n_feature): 使用随机值初始化权重w,确保模型初始状态具有一定的随机性。

  • b = torch.tensor(14.5, requires_grad=True, dtype=torch.float64): 初始化偏置b,并设置requires_grad=True以启用梯度计算,确保偏置可以被优化。

  • return w, b: 返回初始化的权重和偏置。

构建梯度下降函数

def optim_step(w,b,dw,db,lr):
#更新梯度,朝着梯度下降的方向去更新梯度w.data = w.data-lr*dw.datab.data = b,data-lr*db.data
  • def optim_step(w, b, dw, db, lr):: 定义一个名为optim_step的函数,用于更新模型参数。

  • w.data = w.data - lr * dw.data: 更新权重w,沿着梯度下降的方向,使用学习率lr控制更新的步长。

  • b.data = b.data - lr * db.data: 更新偏置b,沿着梯度下降的方向,使用学习率lr控制更新的步长。

使用上面构建的函数进行实战训练

def train():#生成数据x,y,coef = build_data()#初始化参数w,b = initialize(x.shape[1])#定义训练参数lr = 0.01epoch = 100for i in range(epoch):loss_e = 0count = 0for batch_x,batch_y_true in data_loader(x,y):y_bacth_pred = myregreser(batch_x,w,b)loss = MSE(y_bacth_pred,batch_y_true)loss_e+=losscount+=1#梯度清零if w.grad is not None:w.data.zero_()if b.grad is not None:b.data.zero_()#反向传播(梯度计算)loss.backward()#梯度更行optim_step(w,b,w.grad,b.grad,lr)print(f'epoch:{i},loss:{loss_e/count}')return w,b,coef
if __name__=='__main__':w,b,coef = train()print(w,b)print(coef)print(torch.allclose(w,torch.tensor(coef)))
  • def train():: 定义一个名为train的函数,用于训练模型。

  • x, y, coef = build_data(): 生成数据集,获取特征矩阵x、目标向量y和真实系数coef

  • w, b = initialize(x.shape[1]): 初始化模型参数,获取初始化的权重w和偏置b

  • lr = 0.01: 设置学习率为0.01,控制参数更新的步长。

  • epoch = 100: 设置训练轮数为100,控制训练的迭代次数。

  • for i in range(epoch):: 外层循环,遍历每个训练轮,确保模型在多个轮次中进行训练。

  • loss_e = 0: 初始化每轮的总损失为0,用于累加每个批次的损失。

  • count = 0: 初始化批次计数为0,用于计算每轮的平均损失。

  • for batch_x, batch_y_true in data_loader(x, y):: 内层循环,遍历每个批次的数据,确保每个批次都能被处理。

  • y_batch_pred = myregreser(batch_x, w, b): 计算预测值,使用当前的权重和偏置进行预测。

  • loss = MSE(y_batch_pred, batch_y_true): 计算损失,使用均方误差衡量预测值和真实值之间的差异。

  • loss_e += loss: 累加损失,用于计算每轮的总损失。

  • count += 1: 计数批次数量,用于计算每轮的平均损失。

  • if w.grad is not None:: 检查权重w的梯度是否存在,确保梯度已经计算。

  • w.grad.zero_(): 清零权重w的梯度,避免梯度累积。

  • if b.grad is not None:: 检查偏置b的梯度是否存在,确保梯度已经计算。

  • b.grad.zero_(): 清零偏置b的梯度,避免梯度累积。

  • loss.backward(): 反向传播,计算梯度,用于更新模型参数。

  • optim_step(w, b, w.grad, b.grad, lr): 更新参数,沿着梯度下降的方向更新权重和偏置。

  • print(f'epoch:{i}, loss:{loss_e / count}'): 打印每轮的平均损失,用于监控训练过程。

  • return w, b, coef: 返回训练后的权重、偏置和真实系数,用于评估模型性能。

相关文章:

人工智能-深度学习-Torch框架-手动构建回归流程

from sklearn.datasets import make_regression import math import random import torch from sklearn.datasets import make_regression: 导入make_regression函数,用于生成回归数据集。 import math: 导入math模块,用于进行数学计算,例如…...

SpringBoot源码解析(五):准备应用环境

SpringBoot源码系列文章 SpringBoot源码解析(一):SpringApplication构造方法 SpringBoot源码解析(二):引导上下文DefaultBootstrapContext SpringBoot源码解析(三):启动开始阶段 SpringBoot源码解析(四):解析应用参数args Sp…...

MySQL面试-1

InnoDB中ACID的实现 先说一下原子性是怎么实现的。 事务要么失败,要么成功,不能做一半。聪明的InnoDB,在干活儿之前,先将要做的事情记录到一个叫undo log的日志文件中,如果失败了或者主动rollback,就可以通…...

nginx配置不缓存资源

方法1 location / {index index.html index.htm;add_header Cache-Control no-cache,no-store;try_files $uri $uri/ /index.html;#include mime.types;if ($request_filename ~* .*\.(htm|html)$) {add_header Cache-Control "private, no-store, no-cache, must-revali…...

PHP导出EXCEL含合计行,设置单元格格式

PHP导出EXCEL含合计行,设置单元格格式,水平居中 垂直居中 public function exportSalary(Request $request){//水平居中 垂直居中$styleArray [alignment > [horizontal > Alignment::HORIZONTAL_CENTER,vertical > Alignment::VERTICAL_CE…...

RabbitMQ 之 死信队列

一、死信的概念 先从概念解释上搞清楚这个定义,死信,顾名思义就是无法被消费的消息,字面意思可以这样理 解,一般来说,producer 将消息投递到 broker 或者直接到 queue 里了,consumer 从 queue 取出消息进行…...

【创建型设计模式】单例模式

【创建型设计模式】单例模式 这篇博客接下来几篇都将阐述设计模式相关内容。 接下来的顺序大概是:单例模式、工厂方法模式、抽象工厂模式、建造者模式、原型模式。 一、什么是单例模式 单例模式是一种创建型设计模式,它保证一个类仅有一个实例&#…...

Charles抓包工具-笔记

摘要 概念: Charles是一款基于 HTTP 协议的代理服务器,通过成为电脑或者浏览器的代理,然后截取请求和请求结果来达到分析抓包的目的。 功能: Charles 是一个功能全面的抓包工具,适用于各种网络调试和优化场景。 它…...

Go语言使用 kafka-go 消费 Kafka 消息教程

Go语言使用 kafka-go 消费 Kafka 消息教程 在这篇教程中,我们将介绍如何使用 kafka-go 库来消费 Kafka 消息,并重点讲解 FetchMessage 和 ReadMessage 的区别,以及它们各自适用的场景。通过这篇教程,你将了解如何有效地使用 kafk…...

【论文笔记】Number it: Temporal Grounding Videos like Flipping Manga

🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 基本信息 标题: Number it: Temporal Grou…...

C语言菜鸟入门·关键字·int的用法

目录 1. int关键字 1.1 取值范围 1.2 符号类型 1.3 运算 1.3.1 加法运算() 1.3.2 减法运算(-) 1.3.3 乘法运算(*) 1.3.4 除法运算(/) 1.3.5 取余运算(%) 1.3.6 自增()与自减(--) 1.3.7 位运算 2. 更多关键字 1. int关键字 int 是一个关键字&#xff0…...

基于企业微信客户端设计一个文件下载与预览系统

在企业内部沟通与协作中,文件分享和管理是不可或缺的一部分。企业微信(WeCom)作为一款广泛应用于企业的沟通工具,提供了丰富的API接口和功能,帮助企业进行高效的团队协作。然而,随着文件交换和协作的日益增…...

昇思MindSpore第七课---文本解码原理

1. 文本解码原理 文本解码是将模型的输出(通常是概率分布或词汇索引)转换为可读的自然语言文本的过程。在生成文本时,常见的解码方法包括贪心解码、束搜索(BeamSearch)、随机采样等。 2 实践 2.1 配置环境 安装mindn…...

C# 数据结构之【图】C#图

1. 图的概念 图是一种重要的数据结构,用于表示节点(顶点)之间的关系。图由一组顶点和连接这些顶点的边组成。图可以是有向的(边有方向)或无向的(边没有方向),可以是加权的&#xff…...

传输控制协议(TCP)和用户数据报协议(UDP)

一、传输控制协议(TCP) 传输控制协议(Transmission Control Protocol,TCP)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由 IETF 的 RFC 793 定义。 它通过三次握手建立连接,确保数…...

【Python爬虫】Scrapy框架实战---百度首页热榜新闻

如何利用Scrapy框架实战提取百度首页热榜新闻的排名、标题和链接 一、安装Scrapy库 二、创建项目(以BaiduSpider为例) scrapy startproject BaiduSpider生成每个文件的功能: 二、 创建爬虫脚本(爬虫名:news&#xff…...

采用python3.12 +django5.1 结合 RabbitMQ 和发送邮件功能,实现一个简单的告警系统 前后端分离 vue-element

一、开发环境搭建和配置 #mac环境 brew install python3.12 python3.12 --version python3.12 -m pip install --upgrade pip python3.12 -m pip install Django5.1 python3.12 -m django --version #用于检索系统信息和进程管理 python3.12 -m pip install psutil #集成 pika…...

Qt 实现网络数据报文大小端数据的收发

1.大小端数据简介 大小端(Endianness)是计算机体系结构的一个术语,它描述了多字节数据在内存中的存储顺序。以下是大小端的定义和它们的特点: 大端(Big-Endian) 在大端模式中,一个字的最高有效…...

[译]Elasticsearch Sequence ID实现思路及用途

原文地址:https://www.elastic.co/blog/elasticsearch-sequence-ids-6-0 如果 几年前,在Elastic,我们问自己一个"如果"问题,我们知道这将带来有趣的见解: "如果我们在Elasticsearch中对索引操作进行全面排序会怎样…...

Java基于SpringBoot+Vue的藏区特产销售平台

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

ip子接口配置及删除

配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...