AI安全:从现实关切到未来展望
近年来,人工智能技术飞速发展,从简单的图像识别到生成对话,从自动驾驶到医疗诊断,AI技术正深刻改变着我们的生活。然而,伴随着这些进步,AI的安全性和可控性问题也日益凸显。这不仅涉及技术层面的挑战,更关乎人类社会的未来发展。
当前AI安全研究主要集中在技术安全、社会影响和长期风险三个维度。在技术安全方面,研究人员致力于解决AI系统的可靠性和鲁棒性问题。例如,深度学习模型容易受到对抗样本的攻击,一个经典案例是:通过在熊猫图片上添加人眼无法察觉的噪声,可以让AI系统将其错误识别为长臂猿。这种漏洞在自动驾驶等关键应用中可能造成严重后果。为此,研究人员开发了多种防御技术:
# 对抗样本防御示例
def adversarial_defense(model, image):# 图像预处理processed_image = image_preprocessing(image)# 添加随机噪声增强鲁棒性noise = np.random.normal(0, 0.1, processed_image.shape)robust_image = processed_image + noise# 集成多个模型预测结果predictions = []for submodel in ensemble_models:pred = submodel.predict(robust_image)predictions.append(pred)return majority_vote(predictions)
社会影响层面,AI带来的隐私泄露、算法偏见等问题同样不容忽视。大数据训练可能无意中将社会中的歧视和偏见编码进AI系统。比如,某些招聘AI系统会因历史数据中的性别歧视而对女性求职者产生偏见。解决这类问题需要从数据收集、模型设计到部署测试的全流程把控:
# 公平性检测示例
def fairness_check(predictions, sensitive_attributes):# 计算不同群体的预测差异group_metrics = {}for group in sensitive_attributes.unique():group_mask = sensitive_attributes == groupgroup_preds = predictions[group_mask]metrics = {'accuracy': compute_accuracy(group_preds),'false_positive_rate': compute_fpr(group_preds),'false_negative_rate': compute_fnr(group_preds)}group_metrics[group] = metrics# 检查是否满足公平性标准return evaluate_fairness_metrics(group_metrics)
长期风险方面,AI可能发展出超越人类的智能引发了更深层的担忧。虽然目前的AI还远未达到通用人工智能的水平,但预防性研究已经开始。这包括AI价值对齐问题:如何确保AI系统的目标和行为与人类价值观保持一致。研究人员提出了多种框架,试图将人类价值观编码进AI系统:
# AI价值对齐示例框架
class ValueAlignedAI:def __init__(self):self.human_values = {'safety': 0.9,'fairness': 0.8,'transparency': 0.7,'privacy': 0.85}def evaluate_action(self, action):alignment_score = 0for value, weight in self.human_values.items():score = self.measure_alignment(action, value)alignment_score += weight * scorereturn alignment_score > self.threshold
面对这些挑战,全球正在形成多层次的应对体系。在技术层面,研究机构正在开发更安全的AI架构,包括可验证的AI系统和形式化证明方法。这些方法试图从数学上证明AI系统的行为边界,确保其不会偏离预定目标。
法律监管方面,各国正在建立AI治理框架。欧盟的《人工智能法案》就规定了AI系统的风险等级管理制度,对高风险AI应用提出了严格要求。中国也发布了《新一代人工智能治理原则》,强调发展负责任的AI。
产业界也在积极行动,主要科技公司纷纷成立AI伦理委员会,制定内部准则。一些公司还开源了其AI安全工具,促进整个行业的安全实践共享。这种多方参与的治理模式,为AI的健康发展提供了重要保障。
展望未来,AI安全研究还需要更多跨学科合作。技术研究需要结合伦理学、社会学、心理学等领域的见解,才能更好地应对AI发展带来的复杂挑战。同时,我们也需要培养具备安全意识的AI人才,将安全理念贯穿于AI技术发展的各个环节。

AI安全不是限制发展的枷锁,而是确保AI造福人类的基石。就像其他重大技术创新一样,只有建立完善的安全保障体系,AI才能真正实现其潜力。我们需要在推动创新的同时,始终把安全放在首位,这样才能走出一条AI发展的可持续之路。
随着技术不断演进,新的安全挑战必将不断涌现。这需要我们保持警惕,及时识别和应对风险。同时也要保持开放和包容的态度,让更多利益相关者参与到AI治理中来,共同构建安全可控的AI未来。任重而道远,但只要我们坚持科学理性的态度,就一定能够让AI技术更好地服务人类社会。
相关文章:

AI安全:从现实关切到未来展望
近年来,人工智能技术飞速发展,从简单的图像识别到生成对话,从自动驾驶到医疗诊断,AI技术正深刻改变着我们的生活。然而,伴随着这些进步,AI的安全性和可控性问题也日益凸显。这不仅涉及技术层面的挑战&#…...

YOLO格式数据集介绍
yolo数据集 yolo数据集标注格式主要是 yolov5 项目需要用到。 标签使用txt文本进行保存。yolo的目录如下所示: dataset ├─images │ ├─train │ │ ├─ flip_mirror_himg0026393.jpg │ │ ├─ flip_mirror_himg0026394.jpg │ │ ├─ flip_…...

Doris 数据集成 LakeSoul
Doris 数据集成 LakeSoul 作为一种全新的开放式的数据管理架构,湖仓一体(Data Lakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求,在企业的大数据体系中已经得到越来越多的应用。 在过去多个版本…...

Navicat 预览变更sql
需求 用了Flyway(数据库迁移工具)后,需要记录变更sql,所以要知道变更sql。 查看方式 Navicat提供了预览变更sql功能,右击表---->设计表,比如修改字段后,点击SQL预览标签页, 顺…...

深入理解下oracle 11g block组成
深层次说,oracle数据库的最少组成单位应该是块,一般默认情况下,oracle数据库的块大小是8kb,其中存储着我们平常所需的数据。我们在使用过程中,难免会疑问道:“oracle数据块中到底是怎样组成的,平…...

Qt Graphics View 绘图架构
Qt Graphics View 绘图架构 "QWGraphicsView.h" 头文件代码如下: #pragma once#include <QGraphicsView>class QWGraphicsView : public QGraphicsView {Q_OBJECTpublic:QWGraphicsView(QWidget *parent);~QWGraphicsView();protected:void mouseM…...

大数据-234 离线数仓 - 异构数据源 DataX 将数据 从 HDFS 到 MySQL
点一下关注吧!!!非常感谢!!持续更新!!! Java篇开始了! 目前开始更新 MyBatis,一起深入浅出! 目前已经更新到了: Hadoop࿰…...

零基础学安全--shell脚本学习(1)脚本创建执行及变量使用
目录 学习连接 什么是shell shell的分类 查看当前系统支持shell 学习前提 开始学习 第一种执行脚本方法 编辑 第二种执行脚本方法 第三种执行脚本方法 变量声明和定义 编辑 查看变量 删除变量 学习连接 声明! 学习视频来自B站up主 **泷羽sec** 有兴趣…...

C#对INI配置文件进行读写操作方法
#region 读写ini配置文件/// <summary>/// 对INI文件进行读写/// </summary>class INIHelper{/// <summary>/// 从INI文件中读取数据/// </summary>/// <param name"filePath">INI文件的全路径</param>/// <param name"…...

华为鸿蒙内核成为HarmonyOS NEXT流畅安全新基座
HDC2024华为重磅发布全自研操作系统内核—鸿蒙内核,鸿蒙内核替换Linux内核成为HarmonyOS NEXT稳定流畅新基座。鸿蒙内核具备更弹性、更流畅、更安全三大特征,性能超越Linux内核10.7%。 鸿蒙内核更弹性:元OS架构,性能安全双收益 万…...

请求响应(学习笔记)
请求响应 文章目录 请求响应请求Postman简单参数实体参数数组集合参数数组参数集合参数 日期参数JSON参数路径参数 响应响应数据统一响应结果 分层解耦三层架构分层解耦IOC & DI 入门IOC详解DI详解 请求响应: 请求(HttpServeltRequest):获取请求数据…...

JavaScript核心语法(5)
这篇文章讲一下ES6中的核心语法:扩展运算符和模块化。 目录 1.扩展运算符 数组中的扩展运算符 基本用法 合并数组 对象中的扩展运算符 基本用法 合并对象 与解构赋值结合使用 数组解构中的剩余元素 对象解构中的剩余属性 2.模块化 基本概念 1.扩展运算符…...

2024年第15届蓝桥杯C/C++组蓝桥杯JAVA实现
目录 第一题握手,这个直接从49累加到7即可,没啥难度,后面7个不握手就好了,没啥讲的,(然后第二个题填空好难,嘻嘻不会) 第三题.好数编辑 第四题0R格式 宝石组合 数字接龙 最后一题:拔河 第…...

MongoDB 和 Redis 是两种不同类型的数据库比较
MongoDB 和 Redis 是两种不同类型的数据库,设计目标和应用场景各有侧重,因此性能对比需要结合具体需求场景进行评估。 1. MongoDB 性能特点 类型: 文档型数据库(NoSQL)。适合场景: 复杂查询:支持丰富的查询语法和索引…...

CLIP-Adapter: Better Vision-Language Models with Feature Adapters 论文解读
abstract 大规模对比视觉-语言预训练在视觉表示学习方面取得了显著进展。与传统的通过固定一组离散标签训练的视觉系统不同,(Radford et al., 2021) 引入了一种新范式,该范式在开放词汇环境中直接学习将图像与原始文本对齐。在下游任务中,通…...

Spring Boot 开发环境搭建详解
下面安装spring boot的详细步骤,涵盖了从安装 JDK 和 Maven 到创建和运行一个 Spring Boot 项目的全过程。 文章目录 1. 安装 JDK步骤 1.1:下载 JDK步骤 1.2:安装 JDK步骤 1.3:配置环境变量 2. 安装 Maven步骤 2.1:下载…...

网络安全中的数据科学如何重新定义安全实践?
组织每天处理大量数据,这些数据由各个团队和部门管理。这使得全面了解潜在威胁变得非常困难,常常导致疏忽。以前,公司依靠 FUD 方法(恐惧、不确定性和怀疑)来识别潜在攻击。然而,将数据科学集成到网络安全中…...

安装数据库客户端工具
如果没有勾选下面的,可以运行下面的两个命令 红框为自带数据库 新建数据库 右键运行mysql文件,找到数据库,并刷新...

GoogleTest做单元测试
目录 环境准备GoogleTest 环境准备 git clone https://github.com/google/googletest.git说cmkae版本过低了,解决方法 进到googletest中 cmake CMakeLists.txt make sudo make installls /usr/local/lib存在以下文件说明安装成功 中间出了个问题就是,…...

深入解析 EasyExcel 组件原理与应用
✨深入解析 EasyExcel 组件原理与应用✨ 官方:EasyExcel官方文档 - 基于Java的Excel处理工具 | Easy Excel 官网 在日常的 Java 开发工作中,处理 Excel 文件的导入导出是极为常见的需求。 今天,咱们就一起来深入了解一款非常实用的操作 Exce…...

JSON数据转化为Excel及数据处理分析
在现代数据处理中,JSON(JavaScript Object Notation)因其轻量级和易于人阅读的特点而被广泛使用。然而,有时我们需要将这些JSON数据转化为Excel格式以便于进一步的分析和处理。本文将介绍如何将JSON数据转化为Excel文件࿰…...

(计算机网络)期末
计算机网络概述 物理层 信源就是发送方 信宿就是接收方 串行通信--一次只发一个单位的数据(串行输入) 并行通信--一次可以传输多个单位的数据 光纤--利用光的反射进行传输 传输之前,要对信源进行一个编码,收到信息之后要进行一个…...

【AI技术赋能有限元分析应用实践】将FEniCS 软件安装在Ubuntu22.04
FEniCS 完整介绍 FEniCS 是一个开源的计算工具包,专门用于解决偏微分方程(PDE)的建模和求解。它以灵活的数学抽象和高效的计算性能著称,可以让用户使用高层次的数学表达来定义问题,而无需关注底层的数值实现细节。 具体来看,FEniCS 是一个开源的高性能计算工具包,用于…...

快速识别模型:simple_ocr,部署教程
快速识别图片中的英文、标点符号、数学符号、Emoji, 模型会输出图片中文字行的坐标位置、最低得分、识别结果。当前服务用到的模型:检测模型、数字识别、英文符号识别。 一、部署流程 1.更新基础环境 apt update2.安装miniconda wget https://repo.anaconda.com/…...

【C/C++】数据库链接入门教程:从零开始的详细指南!MySQL集成与操作
文章目录 环境配置:搭建开发环境的基础步骤2.1 安装MySQL数据库2.2 配置C/C开发环境2.3 下载并安装MySQL Connector/C 基础操作:实现C/C与MySQL的基本交互3.1 建立数据库连接3.2 执行SQL语句3.3 处理查询结果 进阶技巧:提升数据库操作效率与安…...

C#中面试的常见问题005
1、重载和重写 重载(Overloading) 重载是指在同一个类中定义多个同名方法,但参数列表不同(参数的数量、类型或顺序不同)。返回类型可以相同也可以不同。重载方法允许你根据传入的参数类型和数量来调用不同的方法。 …...

使用Redis生成全局唯一id
为了生成一个符合要求的分布式全局ID,我们可以使用 StringRedisTemplate 来实现。这个ID由三部分组成: 符号位(1 bit):始终为0,表示正数。时间戳(31 bit):表示从某个起始…...

pnpm:包管理的新星,平替 npm 和 yarn
pnpm,一个老牌的 node.js 包管理器,支持 npm 的所有功能,完全足以用来替代 npm。它采用全局存储,每个项目内部使用了硬链接,所以很省空间,安装速度快。 本文介绍下 pnpm 的基本概念,安装、…...

Android调起系统分享图片到其他应用
Android调起系统分享图片到其他应用 有时候分享不想接第三方的,其实如果你的分享要求不是很高,调系统的分享也是可以的。 一、思路: 用intent.action Intent.ACTION_SEND 二、效果图: 三、关键代码: //这个是分享…...

详解Qt QBuffer
文章目录 **QBuffer 的详解****前言****QBuffer 是什么?****QBuffer 的主要用途****构造函数****主要成员函数详解****1. open()****原型:****作用:****参数:****返回值:****示例代码:** **2. write()****原…...