当前位置: 首页 > news >正文

不玩PS抠图了,改玩Python抠图

网上找了两个苏轼的印章图片:

把这两个印章抠出来的话,对于不少PS高手来说是相当容易,但是要去掉其中的水印,可能要用仿制图章慢慢描绘,图章的边缘也要慢慢勾画或者用通道抠图之类来处理,而且印章的红色也不是很鲜亮,调整颜色也有点麻烦。弄个下面的Python程序,那就秒杀。

import randomimport cv2def remove_background(image_path, red_threshold):"""将图片中红色分量低于指定值的点全部变成透明:param image_path: 图片的路径:param red_threshold: 红色分量的阈值:return: 处理后的透明背景红色增强图片(numpy.ndarray类型)"""# 读取图片image = cv2.imread(image_path)image_rgba = cv2.cvtColor(image, cv2.COLOR_BGR2RGBA)# 获取图片的高度、宽度和通道数height, width, channels = image.shape# 遍历图片中的每个像素点for i in range(height):for j in range(width):# 获取当前像素点的红色分量值red_value = image[i][j][2]# 如果红色分量值低于阈值,将该像素点变为透明if red_value < red_threshold:image_rgba[i][j] = [0, 0, 0, 0]else:# 考虑到现实中的红色未必都是纯红,生成一种随机的比较鲜艳的红色填充红色区域。这样水印自然消掉了red_value = random.randint(248, 255)green_value = random.randint(0, 8)blue_value = random.randint(0, 5)image_rgba[i][j] = [blue_value, green_value, red_value, 255]return image_rgbaif __name__ == '__main__':file_path = 'meiyang.jpg'image = remove_background(file_path, red_threshold=127)cv2.imwrite('meiyang.png', image)cv2.imshow('image', image)cv2.waitKey(0)cv2.destroyAllWindows()

抠图效果展示(右下角CSDN添加的水印别怪我,看不出透明背景别怪我):

其实只要前景色中没有混杂背景色,如果前景色和背景色差异较大或者转换为灰度图片后前景色与背景色灰度值相差明显,就可以稍微修改一下上面的代码将背景改成透明的,从而完成抠图。背景色不是纯黑纯白时可传入红绿蓝三个分量的阈值,转换为灰度图片后前景色与背景色灰度值相差明显时可先转换成灰度图片后二值化作为掩码图片,利用掩码图片消除原始图片上的背景。

话说苏东坡是白字先生,“士”字多刻了两笔🐶。

相关文章:

不玩PS抠图了,改玩Python抠图

网上找了两个苏轼的印章图片&#xff1a; 把这两个印章抠出来的话&#xff0c;对于不少PS高手来说是相当容易&#xff0c;但是要去掉其中的水印&#xff0c;可能要用仿制图章慢慢描绘&#xff0c;图章的边缘也要慢慢勾画或者用通道抠图之类来处理&#xff0c;而且印章的红色也不…...

三维渲染中顺序无关的半透明混合(OIT)(一Depth Peeling)

>本文收集关于透明对象渲染技术中关于OIT技术的资料&#xff0c;尝试用简单的逻辑对这些内容进行整理。 1、透明对象的特殊对待 不要小瞧png图片和jpg图片的差异&#xff01;在一般的三维平台&#xff0c;png代表的是带透明通道的纹理&#xff0c;而jpg代表的是不带透明的…...

Linux零基础入门--Makefile和make--纯干货无废话!!

目录 Makefile的概念与使用 Makefile的编写 多个源文件的Makefile编写 Makefile的概念与使用 Makefile其实是linux中的一种包含构建指令的文件&#xff0c;用于自动化构建 一个工程中的源文件不计数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;makefi…...

vim编辑器的一些配置和快捷键

记录vim编辑器的一些配置和快捷键&#xff0c;边学边用&#xff1a; yy 复制dd 删除p&#xff1a;粘贴ctrly 取消撤销u&#xff1a;撤销:w 写入:q 退出a/i 插入O: 上方插入一个空行o&#xff1a;下方插入一个空行:e 打开文件编辑 其他配置&#xff1a; 上移一行和下移一行&a…...

电子应用设计方案-31:智能AI音响系统方案设计

智能 AI 音响系统方案设计 一、引言 智能 AI 音响作为一种新兴的智能家居设备&#xff0c;通过融合语音识别、自然语言处理、音频播放等技术&#xff0c;为用户提供便捷的语音交互服务和高品质的音乐体验。本方案旨在设计一款功能强大、性能稳定、用户体验良好的智能 AI 音响系…...

【设计模式】【结构型模式(Structural Patterns)】之装饰模式(Decorator Pattern)

1. 设计模式原理说明 装饰模式&#xff08;Decorator Pattern&#xff09; 是一种结构型设计模式&#xff0c;它允许在不改变对象接口的前提下&#xff0c;动态地给对象增加额外的责任或功能。这种模式创建了一个装饰类&#xff0c;用于包装原有的类&#xff0c;并在保持类方法…...

【AI】JetsonNano启动时报错:soctherm OC ALARM

1、问题描述 将JetsonNano烧写SD卡镜像为Ubuntu20.04后&#xff0c;启动时报错&#xff1a;soctherm OC ALARM&#xff0c;启动失败&#xff1b;然后系统一直重启 2、原因分析 “soctherm OC ALARM”是检测到系统温度超过安全阈值时发出的过热警告。 “soctherm”代表系统…...

QT:生成二维码 QRCode

目录 1.二维码历史2.QT源码3.界面展示4.工程源码链接 1.二维码历史 二维码&#xff08;2-Dimensional Bar Code&#xff09;&#xff0c;是用某种特定的几何图形按一定规律在平面&#xff08;二维方向上&#xff09;分布的黑白相间的图形记录数据符号信息的。它是指在一维条码…...

【LeetCode刷题之路】120:三角形最小路径和的两种解法(动态规划优化)

LeetCode刷题记录 &#x1f310; 我的博客主页&#xff1a;iiiiiankor&#x1f3af; 如果你觉得我的内容对你有帮助&#xff0c;不妨点个赞&#x1f44d;、留个评论✍&#xff0c;或者收藏⭐&#xff0c;让我们一起进步&#xff01;&#x1f4dd; 专栏系列&#xff1a;LeetCode…...

神经网络中常见的激活函数Sigmoid、Tanh和ReLU

激活函数在神经网络中起着至关重要的作用&#xff0c;它们决定了神经元的输出是否应该被激活以及如何非线性地转换输入信号。不同的激活函数适用于不同的场景&#xff0c;选择合适的激活函数可以显著影响模型的性能和训练效率。以下是三种常见的激活函数&#xff1a;Sigmoid、T…...

适用于学校、医院等低压用电场所的智能安全配电装置

引言 电力&#xff0c;作为一种清洁且高效的能源&#xff0c;极大地促进了现代生活的便捷与舒适。然而&#xff0c;与此同时&#xff0c;因使用不当或维护缺失等问题&#xff0c;漏电、触电事件以及电气火灾频发&#xff0c;对人们的生命安全和财产安全构成了严重威胁&#xf…...

基于python爬虫的智慧人才数据分析系统

废话不多说&#xff0c;先看效果图 更多效果图可私信我获取 源码分享 import os import sysdef main():"""Run administrative tasks."""os.environ.setdefault(DJANGO_SETTINGS_MODULE, 智慧人才数据分析系统.settings)try:from django.core.m…...

LeetCode-315. Count of Smaller Numbers After Self

目录 题目描述 解题思路 【C】 【Java】 复杂度分析 LeetCode-315. Count of Smaller Numbers After Selfhttps://leetcode.com/problems/count-of-smaller-numbers-after-self/description/ 题目描述 Given an integer array nums, return an integer array counts whe…...

根据导数的定义计算导函数

根据导数的定义计算导函数 1. Finding derivatives using the definition (使用定义求导)1.1. **We want to differentiate f ( x ) 1 / x f(x) 1/x f(x)1/x with respect to x x x**</font>1.2. **We want to differentiate f ( x ) x f(x) \sqrt{x} f(x)x ​ wi…...

WPF关于打开新窗口获取数据的回调方法的两种方式

一种基于消息发送模式 一种基于回调机制 基于消息发送模式 父页面定义接收的_selectedPnNumberStandarMsg保证是唯一 Messenger.Default.Register<PlateReplaceApplyModel>(this, _selectedPnNumberStandarMsgToken, platePnNumberModel > { …...

复杂网络(四)

一、规则网络 孤立节点网络全局耦合网络&#xff08;又称完全网络&#xff09;星型网络一维环二维晶格 编程实践&#xff1a; import networkx as nx import matplotlib.pyplot as pltn 10 #创建孤立节点图 G1 nx.Graph() G1.add_nodes_from(list(range(n))) plt.figure(f…...

用MATLAB符号工具建立机器人的动力学模型

目录 介绍代码功能演示拉格朗日方法回顾求解符号表达式数值求解 介绍 开发机器人过程中经常需要用牛顿-拉格朗日法建立机器人的动力学模型&#xff0c;表示为二阶微分方程组。本文以一个二杆系统为例&#xff0c;介绍如何用MATLAB符号工具得到微分方程表达式&#xff0c;只需要…...

SQL优化与性能——数据库设计优化

数据库设计优化是提高数据库性能、确保数据一致性和支持业务增长的关键环节。无论是大型企业应用还是小型项目&#xff0c;合理的数据库设计都能够显著提升系统性能、减少冗余数据、优化查询响应时间&#xff0c;并降低维护成本。本章将深入探讨数据库设计中的几个关键技术要点…...

FPGA存在的意义:为什么adc连续采样需要fpga来做,而不会直接用iic来实现

FPGA存在的意义&#xff1a;为什么adc连续采样需要fpga来做&#xff0c;而不会直接用iic来实现 原因ADS111x连续采样实现连续采样功能说明iic读取adc的数据速率 VS adc连续采样的速率adc连续采样的速率iic读取adc的数据速率结论分析 FPGA读取adc数据问题一&#xff1a;读取adc数…...

我们来学mysql -- 事务之概念(原理篇)

事务的概念 题记一个例子一致性隔离性原子性持久性 题记 在漫长的编程岁月中&#xff0c;存在一如既往地贯穿着工作&#xff0c;面试的概念这类知识点&#xff0c;事不关己当然高高挂起&#xff0c;精准踩坑时那心情也的却是日了&#x1f436;请原谅我的粗俗&#xff0c;遇到B…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...