当前位置: 首页 > news >正文

【llm_inference】react框架(最小code实现)

ReAct:结合推理和行动的大语言模型推理架构

GitHub Code: 人人都能看懂的最小实现

引言

在人工智能领域,大语言模型(LLM)的应用日益广泛,但如何让模型能够像人类一样,在思考的基础上采取行动,并根据行动结果继续推理,这是一个重要的研究方向。ReAct(Reasoning + Acting)推理架构就是为解决这一问题而生的。本文将深入剖析 ReAct 推理架构的实现原理和具体应用。

ReAct 架构概述

ReAct 是一种结合了推理(Reasoning)和行动(Acting)的语言模型推理架构。它允许模型在回答问题时,通过不断的思考、采取行动、观察结果,最终得出答案。这种方式模拟了人类解决问题的过程,使得模型的推理过程更加透明和可控。

核心组件

  1. 思考(Thought):模型对当前情况进行分析和推理
  2. 行动(Action):根据推理结果选择并执行特定工具
  3. 观察(Observation):获取行动的结果
  4. 最终答案(Final Answer):综合所有信息得出的结论

技术实现解析

1. 工具定义

class WebSearch:def __init__(self, name:str='web_search', threshold:int=8000):self.system_prompt = """
你是一位洞察研究员。
1. 为用户查询寻找详细信息,并尽可能简单地将内容总结为一句话
2. 如果用户的问题是关于具体数值的,只返回数值结果,不需要任何额外解释。
"""self.name = nameself.description = "用于网络搜索的工具"

这个实现展示了如何定义一个工具类,每个工具都包含:

  • 名称(name)
  • 描述(description)
  • 系统提示(system_prompt)
  • 执行逻辑(__call__方法)

2. 推理流程实现

ReAct 的核心推理流程通过 react 函数实现:

def react(question: str, tools: List[Callable]) -> str:# 构建提示模板# 循环执行推理过程# 解析响应并执行工具# 返回最终答案
关键步骤解析:
  1. 提示词构建

    • 将可用工具信息注入到提示模板中
    • 设定标准化的输出格式
    • 引导模型按照 Thought-Action-Observation 循环进行推理
  2. 循环推理过程

    • 获取模型响应
    • 解析响应中的行动指令
    • 执行相应工具
    • 将观察结果反馈给模型
  3. 结果处理

    • 使用正则表达式提取最终答案
    • 格式化输出结果

实现细节深度解析

1. 消息格式化

def format_message(messages: List[Dict], last_content_length: int = 0) -> int:"""格式化打印新增的消息内容"""

这个函数巧妙地实现了增量式的消息打印,通过记录上次打印的内容长度,只打印新增的内容,提高了交互体验。

2. 工具执行机制

工具执行采用了装饰器模式,通过 __call__ 方法实现了统一的调用接口:

def __call__(self, query:str):results = serpapi_search(query)msg = [{"role":"system","content":self.system_prompt},{"role":"user", "content": f"查询内容是:{query},搜索结果是:{results}"}]answer = get_model_response_sync(model_name="deepseek-chat", messages=msg)return answer

3. 正则表达式解析

使用正则表达式精确提取模型响应中的关键信息:

regex = r"Action: \[(.*?)\][\s]*Action Input: (.*?)(?:\n|$)"
action_match = re.search(regex, response, re.DOTALL)

应用示例

以下是一个实际的应用示例:

def main():query = "2024年欧洲杯和2024年美洲杯冠军"print("\n🚀 Starting new query:", query)search_tool = WebSearch()tools = [search_tool]result = react(query, tools)print("最终答案:")print(result)

这个例子展示了如何使用 ReAct 架构来回答一个需要实时信息的问题。系统会:

  1. 初始化搜索工具
  2. 提交查询
  3. 通过反复推理和搜索
  4. 最终得出答案

总结

ReAct 推理架构为大语言模型提供了一个强大的推理框架,使其能够像人类一样思考和行动。通过将推理过程分解为思考、行动和观察三个步骤,不仅提高了模型的推理能力,还增强了推理过程的可解释性。

这种架构特别适合需要多步推理和外部工具调用的复杂任务,例如信息搜索、数据分析等。通过合理的工具设计和灵活的扩展机制,ReAct 架构可以适应各种不同的应用场景。

相关文章:

【llm_inference】react框架(最小code实现)

ReAct:结合推理和行动的大语言模型推理架构 GitHub Code: 人人都能看懂的最小实现 引言 在人工智能领域,大语言模型(LLM)的应用日益广泛,但如何让模型能够像人类一样,在思考的基础上采取行动&#xff0c…...

PT8M2103 触控 I/O 型 8-Bit MCU

1 产品概述 ● PT8M2103 是一款可多次编程(MTP)I/O 型8位 MCU,其包括 2K*16bit MTP ROM、256*8bit SRAM、PWM、Touch 等功能,具有高性能精简指令集、低工作电压、低功耗特性且完全集成触控按键功能。为各种触控按键的应用,提供了一种简单而又…...

英语时态学习+名词副词形容词变形方式

开发出头不容易 不如跨界卷英语 英语中的16种时态是由四种时间(现在、过去、将来、过去将来)和四种体(一般、进行、完成、完成进行)组合而成的。以下是每种时态的详细说明和例句: 一般现在时 (Simple Present) 用法…...

浏览器解析页面流程

从输入一个url到页面解析完成的流程 1. 网络进程 1. 获取url 浏览器首先判断输入的url是否有http缓存,如果有则直接从http缓存中读取数据并显示。如果没有,则进行下一步。进行DNS解析,获取域名对应的IP地址。 2.下载html文件 浏览器根据I…...

图的遍历之DFS邻接矩阵法

本题要求实现一个函数,对给定的用邻接矩阵存储的无向无权图,以及一个顶点的编号v,打印以v为起点的一个深度优先搜索序列。 当搜索路径不唯一时,总是选取编号较小的邻接点。 本题保证输入的数据(顶点数量、起点的编号等…...

Java --- JVM编译运行过程

目录 一.Java编译与执行流程: 二.编译过程: 1.编译器(javac): 2.字节码文件(.class): 三.执行过程: 1.启动JVM(Java虚拟机): 2…...

HTML5 拖拽 API 深度解析

一、HTML5 拖拽 API 深度解析 1.1 背景与发展 HTML5 的拖拽 API 是为了解决传统拖拽操作复杂而设计的。传统方法依赖鼠标事件和复杂的逻辑计算,而 HTML5 提供了标准化的拖拽事件和数据传递机制,使得开发者能够快速实现从一个元素拖拽到另一个元素的交互…...

GO--基于令牌桶和漏桶的限流策略

至于为什么要限流,字面意思已经很清楚了,就是为了减轻服务器的压力 下面我们将介绍两个限流策略----漏桶和令牌桶。 漏桶 原理介绍 漏桶,顾名思义就是一个漏斗,漏斗嘴的大小是固定的,所以不管漏斗现容量多大&#…...

MongoDB性能监控工具

mongostat mongostat是MongoDB自带的监控工具,其可以提供数据库节点或者整个集群当前的状态视图。该功能的设计非常类似于Linux系统中的vmstat命令,可以呈现出实时的状态变化。不同的是,mongostat所监视的对象是数据库进程。mongostat常用于…...

Axure设计之模拟地图人员移动轨迹

在产品原型设计时,为了更好的表达和呈现预期的效果,让客户或开发看一眼就能理解要实现的功能,往往需要在产品设计时尽量去接近现实,这就需要我们在使用Axure制作原型时应具有高度细节和逼真度的原型设计。原型设计不仅包含了产品的…...

Android环境搭建

Android环境搭建 第一步:安装 Homebrew 执行以下命令来安装 Homebrew: /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"检测是否安装成功: brew --version第二步:安装 No…...

前端工程化面试题(一)

如何使用 Docker 部署前端项目? 使用 Docker 部署前端项目通常涉及以下几个步骤: 创建项目:首先,需要在本地创建并配置好前端项目。 准备 Docker 文件: .dockerignore:这个文件用于排除不需要上传到 Dock…...

模型案例:| 手机识别模型!

导读 2023年以ChatGPT为代表的大语言模型横空出世,它的出现标志着自然语言处理领域取得了重大突破。它在文本生成、对话系统和语言理解等方面展现出了强大的能力,为人工智能技术的发展开辟了新的可能性。同时,人工智能技术正在进入各种应用领…...

期权懂|个股期权交割操作流程是什么样的?

期权小懂每日分享期权知识,帮助期权新手及时有效地掌握即市趋势与新资讯! 个股期权交割操作流程是什么样的? 一、行权申报: 期权买方在行权日通过其经纪商提交行权指令,表明其决定行使期权权利。 二、行权匹配&#xf…...

【openGauss】openGauss execute执行update语句,获取更新的行数

【openGauss】openGauss execute执行update语句,获取更新的行数 在openGauss中,可以使用execute语句执行update语句,并通过GET DIAGNOSTICS语句获取更新的行数。下面是一个示例: DO $$ DECLAREupdated_rows INTEGER; BEGINEXECUT…...

P8780 [蓝桥杯 2022 省 B] 刷题统计

题目描述 小明决定从下周一开始努力刷题准备蓝桥杯竞赛。他计划周一至周五每天做 𝑎道题目,周六和周日每天做 𝑏 道题目。请你帮小明计算,按照计划他将在第几天实现做题数大于等于 𝑛 题? 输入格式 输入一行包含三…...

切比雪夫不等式:方差约束下的概率估计

切比雪夫不等式:方差约束下的概率估计 背景 在概率分析中,切比雪夫不等式是一个常用的工具,它通过引入随机变量的 方差信息,给出了偏离均值的概率界限。这一不等式是对 马尔科夫不等式 的自然扩展,结合了更丰富的分布…...

使用CancellationTokenSource来控制长时间sql查询中断

前端 <!-- 透明的覆盖层&#xff0c;显示在页面上方&#xff0c;包含进度条 --><Grid Visibility"{Binding IsLoading}" Background"Transparent" HorizontalAlignment"Stretch" VerticalAlignment"Stretch" ZIndex"1&…...

小红薯最新x-s 算法补环境教程12-06更新(下)

在上一篇文章中已经讲了如何去定位x-s生成的位置&#xff0c;本篇文章就直接开始撸代码吧 如果没看过的话可以看&#xff1a;小红薯最新x-s算法分析12-06&#xff08;x-s 56&#xff09;&#xff08;上&#xff09;-CSDN博客 1、获取加密块代码 首先来到参数生成的位置&…...

wazuh-modules-sca

wazuh中安全配置评估模块主线程执行wm_sca_main最后在wm_sca_start中循环执行&#xff0c;不会返回 // Module main function. It wont return #ifdef WIN32 DWORD WINAPI wm_sca_main(void *arg) {wm_sca_t *data (wm_sca_t *)arg; #else void * wm_sca_main(wm_sca_t * dat…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

华为OD机试-食堂供餐-二分法

import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...