当前位置: 首页 > news >正文

电子商务人工智能指南 3/6 - 聊天机器人和客户服务

 介绍

 81% 的零售业高管表示, AI 至少在其组织中发挥了中等至完全的作用。然而,78% 的受访零售业高管表示,很难跟上不断发展的 AI 格局 近年来,电子商务团队加快了适应新客户偏好和创造卓越数字购物体验的需求。采用 AI 不再是一种选择,而是零售商推动规模增长和保持市场差异化的必要条件。电子商务公司现在正在使用 AI 来创建新的客户参与形式,增强在线结账解决方案,并推动数字商务的经济高效流程。 

本指南将全面概述人工智能在电子商务公司的主要应用,并分享 Scale 在零售领域的经验最佳实践。 

电子商务人工智能:为什么它很重要?

人工智能对电子商务有多种益处:

增强客户体验: 电子商务的 AI 解决方案可以帮助公司个性化产品推荐、改善搜索结果并更好地了解客户情绪。借助准确的个性化和推荐机器学习模型,公司可以帮助减少购买时间、在产品详细信息页面上准确描述产品并更好地了解客户行为。通过投资准确的 ML 模型,团队可以实现提高购物转化率和提高客户满意度的目标。此外,电子商务公司可以通过删除违反平台准则的内容(从用户生成的内容到商家特定数据)来提高信任度和安全性。 

最大化盈利能力:  ML 模型可以帮助根据购物和浏览历史提供准确且有针对性的产品推荐,并细分客户分析以提供更准确的广告。通过使用 AI 丰富内容元数据,团队可以更好地了解内容和产品格局。这使电子商务公司能够更好地专注于产品和内容增长工作,并尽早缩小趋势范围。 

加速运营流程: 购物和内容趋势瞬息万变,而手动操作流程却过于缓慢。加速新商家入职、需求预测和内容优化等运营流程。人机交互等技术可以增强机器学习模型,使其达到人类水平的准确性和质量。 

现有的没有人工智能的流程无法满足消费者不断变化的需求。电子商务市场面临三大挑战: 

  1. 成本和投资呈指数级增长: 仅使用内部运营团队来管理电子商务数据和激活新产品通常会抑制增长。手动操作来获取、清理和丰富数据非常耗时。生成新产品资产(例如产品描述和产品摄影)的成本很高。
  2. 缺乏属性数据: 个性化系统受限于稀疏的属性数据。产品数据可能包含不正确的信息、重复项和缺失的属性,导致搜索和产品推荐效果不佳。用户行为内容元数据不够详细,导致内容推荐系统存在缺陷。 
  3. 手动流程太慢: 消费者行为和内容趋势变化很快。当前系统需要太多时间和流程来发现和展示热门内容,平台在保持客户参与度和转化率方面落后。 

在本指南中,我们将解释帮助解决这些挑战的主要用例,并提供帮助您利用 AI 发展业务的路线图。

电子商务中的人工智能:主要用例

电子商务中人工智能有许多不同的应用。在本指南中,我们将重点介绍电子商务中以数据为中心的应用程序的六个主要类别:

  1. 搜索、广告和发现
  2. 需求预测和库存管理
  3. 聊天机器人和客户服务
  4. 内容理解 
  5. 丰富的产品数据
  6. 人工智能生成的产品图像

聊天机器人和客户服务



客户服务是保持客户参与度和改善客户情绪的一个越来越重要的组成部分。然而,通过多种渠道满足大量客户请求可能具有挑战性。同样,现场代理的成本可能很高,并且会增加响应时间。人工智能聊天机器人是帮助解决这些客户支持挑战不可或缺的一部分。人工智能聊天机器人是使用自然语言处理和对话式人工智能来帮助响应客户查询的虚拟助手。聊天机器人可以通过四种主要方式支持客户服务:

1. 参与并回应客户询问:聊天机器人可以为产品相关问题提供指导,并回答有关尺寸、产品变体或折扣的常见问题。  

2. 进销售流程:聊天机器人可以通过提醒客户他们可能留在购物车中的产品来帮助提供产品推荐并减少购物车放弃率。 

3. 提供售后支持:聊天机器人可以提供订单跟踪、退货和换货处理以及收集客户反馈。

ApiSmart

ApiSmart Api design Copilot - ApiHugApiSmart make your api design and implement happier​编辑https://apihug.com/zhCN-docs/copiloticon-default.png?t=O83Ahttps://apihug.com/zhCN-docs/copilot

ApiSmart 已经支持18家大模型供应商,n+大模型接入(本地环境可无限多模型);

  1. OpenAi

  2. Azure

  3. Gemini

  4. Anthropic

  5. DeepInfra

  6. Mooshot

  7. Zhipu

  8. DeepSeek

  9. Qianfan

  10. Grop

  11. Ollama

  12. Mistral

  13. LMStudio

  14. OpenRouter

  15. Jan

  16. GPT4All

  17.  通义-阿里

  18.  混元-腾讯

ApiHug - API Design & Develop New Paradigm.ApiHug - API Design & Develop New Paradigm.https://apihug.com/icon-default.png?t=O83Ahttps://apihug.com/ApiSmart Api design Copilot - ApiHugApiSmart make your api design and implement happierhttps://apihug.com/zhCN-docs/copiloticon-default.png?t=O83Ahttps://apihug.com/zhCN-docs/copilot

相关文章:

电子商务人工智能指南 3/6 - 聊天机器人和客户服务

介绍 81% 的零售业高管表示, AI 至少在其组织中发挥了中等至完全的作用。然而,78% 的受访零售业高管表示,很难跟上不断发展的 AI 格局。 近年来,电子商务团队加快了适应新客户偏好和创造卓越数字购物体验的需求。采用 AI 不再是一…...

【AI模型对比】Kimi与ChatGPT的差距:真实对比它们在六大题型中的全面表现!

文章目录 Moss前沿AI语义理解文学知识数学计算天文学知识物理学知识英语阅读理解详细对比列表总结与建议 Moss前沿AI 【OpenAI】获取OpenAI API Key的多种方式全攻略:从入门到精通,再到详解教程!! 【VScode】VSCode中的智能AI-G…...

spring6:2入门

spring6:2入门 目录 spring6:2入门2.1、环境要求2.2、构建模块2.3、程序开发2.3.1、引入依赖2.3.2、创建java类2.3.3、创建配置文件2.3.4、创建测试类测试2.3.5、运行测试程序 2.4、程序分析2.5、启用Log4j2日志框架2.5.1、Log4j2日志概述2.5.2、引入Log…...

Netty - NIO基础学习

一 简介 1 三大模型是什么? IO三大模型之一,BIO,AIO,还有我们的主角NIO(non-blocking-io),也就是同步非阻塞式IO。这三种模型到底是干什么的?其实这三种模型都是对于JAVA的一种I/O框架,用来进行…...

ArrayList的自动扩容机制源码

Java的ArrayList的自动扩容机制 ArrayList是 Java 中极为常用的动态数组实现类,它依托数组存储数据,能依据实际需求灵活变动容量,高效管理元素集合。在深挖底层源码细节前,先来了解创建ArrayList集合并添加元素时的运作流程&#…...

【llm_inference】react框架(最小code实现)

ReAct:结合推理和行动的大语言模型推理架构 GitHub Code: 人人都能看懂的最小实现 引言 在人工智能领域,大语言模型(LLM)的应用日益广泛,但如何让模型能够像人类一样,在思考的基础上采取行动&#xff0c…...

PT8M2103 触控 I/O 型 8-Bit MCU

1 产品概述 ● PT8M2103 是一款可多次编程(MTP)I/O 型8位 MCU,其包括 2K*16bit MTP ROM、256*8bit SRAM、PWM、Touch 等功能,具有高性能精简指令集、低工作电压、低功耗特性且完全集成触控按键功能。为各种触控按键的应用,提供了一种简单而又…...

英语时态学习+名词副词形容词变形方式

开发出头不容易 不如跨界卷英语 英语中的16种时态是由四种时间(现在、过去、将来、过去将来)和四种体(一般、进行、完成、完成进行)组合而成的。以下是每种时态的详细说明和例句: 一般现在时 (Simple Present) 用法…...

浏览器解析页面流程

从输入一个url到页面解析完成的流程 1. 网络进程 1. 获取url 浏览器首先判断输入的url是否有http缓存,如果有则直接从http缓存中读取数据并显示。如果没有,则进行下一步。进行DNS解析,获取域名对应的IP地址。 2.下载html文件 浏览器根据I…...

图的遍历之DFS邻接矩阵法

本题要求实现一个函数,对给定的用邻接矩阵存储的无向无权图,以及一个顶点的编号v,打印以v为起点的一个深度优先搜索序列。 当搜索路径不唯一时,总是选取编号较小的邻接点。 本题保证输入的数据(顶点数量、起点的编号等…...

Java --- JVM编译运行过程

目录 一.Java编译与执行流程: 二.编译过程: 1.编译器(javac): 2.字节码文件(.class): 三.执行过程: 1.启动JVM(Java虚拟机): 2…...

HTML5 拖拽 API 深度解析

一、HTML5 拖拽 API 深度解析 1.1 背景与发展 HTML5 的拖拽 API 是为了解决传统拖拽操作复杂而设计的。传统方法依赖鼠标事件和复杂的逻辑计算,而 HTML5 提供了标准化的拖拽事件和数据传递机制,使得开发者能够快速实现从一个元素拖拽到另一个元素的交互…...

GO--基于令牌桶和漏桶的限流策略

至于为什么要限流,字面意思已经很清楚了,就是为了减轻服务器的压力 下面我们将介绍两个限流策略----漏桶和令牌桶。 漏桶 原理介绍 漏桶,顾名思义就是一个漏斗,漏斗嘴的大小是固定的,所以不管漏斗现容量多大&#…...

MongoDB性能监控工具

mongostat mongostat是MongoDB自带的监控工具,其可以提供数据库节点或者整个集群当前的状态视图。该功能的设计非常类似于Linux系统中的vmstat命令,可以呈现出实时的状态变化。不同的是,mongostat所监视的对象是数据库进程。mongostat常用于…...

Axure设计之模拟地图人员移动轨迹

在产品原型设计时,为了更好的表达和呈现预期的效果,让客户或开发看一眼就能理解要实现的功能,往往需要在产品设计时尽量去接近现实,这就需要我们在使用Axure制作原型时应具有高度细节和逼真度的原型设计。原型设计不仅包含了产品的…...

Android环境搭建

Android环境搭建 第一步:安装 Homebrew 执行以下命令来安装 Homebrew: /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)"检测是否安装成功: brew --version第二步:安装 No…...

前端工程化面试题(一)

如何使用 Docker 部署前端项目? 使用 Docker 部署前端项目通常涉及以下几个步骤: 创建项目:首先,需要在本地创建并配置好前端项目。 准备 Docker 文件: .dockerignore:这个文件用于排除不需要上传到 Dock…...

模型案例:| 手机识别模型!

导读 2023年以ChatGPT为代表的大语言模型横空出世,它的出现标志着自然语言处理领域取得了重大突破。它在文本生成、对话系统和语言理解等方面展现出了强大的能力,为人工智能技术的发展开辟了新的可能性。同时,人工智能技术正在进入各种应用领…...

期权懂|个股期权交割操作流程是什么样的?

期权小懂每日分享期权知识,帮助期权新手及时有效地掌握即市趋势与新资讯! 个股期权交割操作流程是什么样的? 一、行权申报: 期权买方在行权日通过其经纪商提交行权指令,表明其决定行使期权权利。 二、行权匹配&#xf…...

【openGauss】openGauss execute执行update语句,获取更新的行数

【openGauss】openGauss execute执行update语句,获取更新的行数 在openGauss中,可以使用execute语句执行update语句,并通过GET DIAGNOSTICS语句获取更新的行数。下面是一个示例: DO $$ DECLAREupdated_rows INTEGER; BEGINEXECUT…...

P8780 [蓝桥杯 2022 省 B] 刷题统计

题目描述 小明决定从下周一开始努力刷题准备蓝桥杯竞赛。他计划周一至周五每天做 𝑎道题目,周六和周日每天做 𝑏 道题目。请你帮小明计算,按照计划他将在第几天实现做题数大于等于 𝑛 题? 输入格式 输入一行包含三…...

切比雪夫不等式:方差约束下的概率估计

切比雪夫不等式:方差约束下的概率估计 背景 在概率分析中,切比雪夫不等式是一个常用的工具,它通过引入随机变量的 方差信息,给出了偏离均值的概率界限。这一不等式是对 马尔科夫不等式 的自然扩展,结合了更丰富的分布…...

使用CancellationTokenSource来控制长时间sql查询中断

前端 <!-- 透明的覆盖层&#xff0c;显示在页面上方&#xff0c;包含进度条 --><Grid Visibility"{Binding IsLoading}" Background"Transparent" HorizontalAlignment"Stretch" VerticalAlignment"Stretch" ZIndex"1&…...

小红薯最新x-s 算法补环境教程12-06更新(下)

在上一篇文章中已经讲了如何去定位x-s生成的位置&#xff0c;本篇文章就直接开始撸代码吧 如果没看过的话可以看&#xff1a;小红薯最新x-s算法分析12-06&#xff08;x-s 56&#xff09;&#xff08;上&#xff09;-CSDN博客 1、获取加密块代码 首先来到参数生成的位置&…...

wazuh-modules-sca

wazuh中安全配置评估模块主线程执行wm_sca_main最后在wm_sca_start中循环执行&#xff0c;不会返回 // Module main function. It wont return #ifdef WIN32 DWORD WINAPI wm_sca_main(void *arg) {wm_sca_t *data (wm_sca_t *)arg; #else void * wm_sca_main(wm_sca_t * dat…...

Uniapp的App环境下使用Map获取缩放比例

概述 目前我试过的就是你用vue后缀是拿不到比例的你可以用nvue当然uniapp的uvue应该是更加可以的我使用的是高德所以你得在高德的后台声请原生的Android的key才可以如果是vue3的开发模式的话不用使用this来获取当前对象使用scale对象来接受和改变缩放比例会比较友好然后直接走…...

微信小程序配置less并使用

1.在VScode中下载Less插件 2.在微信小程序中依次点击如下按钮 选择 从已解压的扩展文件夹安装… 3.选中刚在vscode中下载安装的插件文件 如果没有修改过插件的安装目录&#xff0c;一般是在c盘下C:\用户\用户名.vscode\extensions\mrcrowl.easy-less-2.0.2 我的路径是&#xf…...

“全面支持公路数字化转型升级四大任务”视频孪生解决方案

数字经济的加速布局&#xff0c;对交通领域数字化转型、智能化升级提出明确要求。2024年上半年&#xff0c;为深入贯彻落实中共中央、国务院关于加快建设交通强国、数字中国等决策部署&#xff0c;推进公路水路交通基础设施数字转型、智能升级、融合创新&#xff0c;加快发展新…...

顶顶通电话机器人开发接口对接大语言模型之实时流TTS对接介绍

大语言模型一般都是流式返回文字&#xff0c;如果等全部文字返回了一次性去TTS&#xff0c;那么延迟会非常严重&#xff0c;常用的方法就是通过标点符号断句&#xff0c;返回了一句话就提交给TTS。随着流TTS的出现&#xff0c;就可以直接把大模型返回的文字灌给流TTS&#xff0…...

P3379 【模板】最近公共祖先(LCA)

【模板】最近公共祖先&#xff08;LCA&#xff09; https://www.luogu.com.cn/problem/P3379 题目描述 如题&#xff0c;给定一棵有根多叉树&#xff0c;请求出指定两个点直接最近的公共祖先。 输入格式 第一行包含三个正整数 N , M , S N,M,S N,M,S&#xff0c;分别表示…...