当前位置: 首页 > news >正文

吴恩达深度学习——超参数调试

内容来自https://www.bilibili.com/video/BV1FT4y1E74V,仅为本人学习所用。

文章目录

  • 超参数调试
    • 调试
    • 选择范围
  • Batch归一化
    • 公式
    • 整合
  • Softmax

超参数调试

调试

目前学习的一些超参数有学习率 α \alpha α(最重要)、动量梯度下降法 β \beta β(次重要)、Adam优化算法 β 1 \beta_1 β1 β 2 \beta_2 β2 ϵ \epsilon ϵ(这三个参数一般默认)、层数layers(次次重要)、不同层中的隐藏单元数量hidden units(次重要)、学习率衰减learning rate decay(次次重要)、小批量大小mini-batch size(次重要)。在这里插入图片描述

对于超参数的取值,如果有两个超参数,可以画一个网格,然后随机取值;如果有三个超参数,画一个立方体随机取值。

另外,可以从粗到细取值。在某个范围内取的超参数明显比周围的效果要好,那么可以在这个范围内细分取值。

在这里插入图片描述
在这里插入图片描述

选择范围

在这里插入图片描述

假设学习率在0.0001~1之间,那么不应该随机均匀取值,否则大部分数据落在0.1~1上,因此,使用对数标尺搜索超参数。 0.0001 = 1 0 − 4 , 1 = 1 0 0 , r ∈ [ − 4 , 0 ] 0.0001=10^{-4},1=10^0,r\in[-4,0] 0.0001=104,1=100,r[4,0]。在 r r r的范围内随机取值,然后使用对数重新映射到对数标尺上。

Batch归一化

在这里插入图片描述
对于单层神经网络,对参数 x x x归一化,可以方便算法优化。
在这里插入图片描述
对于多层神经网络比如 w [ 3 ] w^{[3]} w[3],是否可以对参数 a [ 2 ] a^{[2]} a[2]归一化? a [ 2 ] a^{[2]} a[2]来自于 z [ 2 ] z^{[2]} z[2],所以对 z [ 2 ] z^{[2]} z[2]进行归一化,称为Batch归一化。

公式

  1. 计算均值:对于给定的mini - batch数据(以神经网络某层输入 z ( 1 ) , z ( 2 ) , ⋯ , z ( m ) z^{(1)}, z^{(2)}, \cdots, z^{(m)} z(1),z(2),,z(m)为例, m m m是mini - batch大小),计算其均值 μ \mu μ μ = 1 m ∑ i = 1 m z ( i ) \mu=\frac{1}{m}\sum_{i = 1}^{m}z^{(i)} μ=m1i=1mz(i)
  2. 计算方差:计算mini - batch数据的方差 σ 2 \sigma^2 σ2 σ 2 = 1 m ∑ i = 1 m ( z ( i ) − μ ) 2 \sigma^2=\frac{1}{m}\sum_{i = 1}^{m}(z^{(i)} - \mu)^2 σ2=m1i=1m(z(i)μ)2
  3. 归一化:对每个数据点 z ( i ) z^{(i)} z(i)进行归一化,得到 z n o r m ( i ) = z ( i ) − μ σ 2 + ϵ z_{norm}^{(i)}=\frac{z^{(i)} - \mu}{\sqrt{\sigma^2+\epsilon}} znorm(i)=σ2+ϵ z(i)μ,其中 ϵ \epsilon ϵ是一个很小的正数(如 1 0 − 8 10^{-8} 108),防止分母为零。
  4. 尺度变换和偏移:引入可学习参数 γ \gamma γ(尺度参数)和 β \beta β(偏移参数),对归一化后的数据进行变换: z ^ ( i ) = γ z n o r m ( i ) + β \hat{z}^{(i)}=\gamma z_{norm}^{(i)}+\beta z^(i)=γznorm(i)+β
    如果 γ = σ 2 + ϵ , β = μ \gamma=\sqrt{\sigma^2+\epsilon},\beta=\mu γ=σ2+ϵ β=μ,有 z ^ ( i ) \hat{z}^{(i)} z^(i)= z ( i ) z^{(i)} z(i) γ 、 β \gamma、\beta γβ是新引入的超参数。

整合

在这里插入图片描述

输入层有 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3三个输入特征,经过两层隐藏层,每层有两个神经元,最终输出 y ^ \hat{y} y^。神经元中 z [ l ] z^{[l]} z[l]表示第 l l l层的线性输出, a [ l ] a^{[l]} a[l]表示第 l l l层的激活输出。

在每一层的线性输出 z [ l ] z^{[l]} z[l]之后进行Batch归一化(BN)操作,引入可学习参数 β [ l ] \beta^{[l]} β[l] γ [ l ] \gamma^{[l]} γ[l],归一化后再经过激活函数得到 a [ l ] a^{[l]} a[l]。图中红色波浪线部分表示Batch归一化的处理位置。

在神经网络中,某层的线性输出原本为 z = W x + b z = Wx + b z=Wx+b 。当进行Batch归一化时,由于后续的 β \beta β(偏移参数)也起到了类似 b b b的添加偏移量的作用,所以从效果上看, b b b的作用被 β \beta β替代了。也就是说, b b b对输入数据所做的添加偏移量的操作,在Batch归一化后的 β \beta β操作中可以等效实现,因此在实际计算中可以将 b b b消去,简化计算过程。

在实际应用中,由于样本是mini-Batch,因此,归一化时可以使用指数加权平均来计算 μ \mu μ σ 2 \sigma^2 σ2

Softmax

之前的分类采用二分分类,这种分类只有0和1两种标记。如果我们需要更多的标记,可以使用Softmax回归来识别多种分类中的一个。

在这里插入图片描述

对于识别猫、狗、小鸡以及其他类别,总共有 C = 4 C = 4 C=4个类别,分别用0(其他)、1(猫)、2(狗)、3(小鸡)表示。下方的神经网络架构,输入 X X X经过多个隐藏层,最终输出层有 n [ L ] = 4 n^{[L]} = 4 n[L]=4个神经元,分别对应输入图像属于“其他”“猫”“狗”“小鸡”这四类的概率 P ( o t h e r ∣ x ) P(other|x) P(otherx) P ( c a t ∣ x ) P(cat|x) P(catx) P ( d o g ∣ x ) P(dog|x) P(dogx) P ( b c l ∣ x ) P(bcl|x) P(bclx),输出 y ^ \hat{y} y^代表预测的类别。

对于 z [ l ] = W [ l ] a [ l − 1 ] + b [ l ] z^{[l]} = W^{[l]}a^{[l - 1]}+b^{[l]} z[l]=W[l]a[l1]+b[l] ,使用Softmax作为激活函数。先对 z [ l ] z^{[l]} z[l]进行指数运算得到 t = e z [ l ] t = e^{z^{[l]}} t=ez[l] ,然后通过Softmax公式计算激活输出 a [ l ] a^{[l]} a[l] a [ l ] = e z [ l ] ∑ j = 1 4 t i a^{[l]}=\frac{e^{z^{[l]}}}{\sum_{j = 1}^{4}t_{i}} a[l]=j=14tiez[l] ,其元素 a i [ l ] = t i ∑ j = 1 4 t i a_{i}^{[l]}=\frac{t_{i}}{\sum_{j = 1}^{4}t_{i}} ai[l]=j=14titi ,将线性输出转换为概率分布。

相关文章:

吴恩达深度学习——超参数调试

内容来自https://www.bilibili.com/video/BV1FT4y1E74V,仅为本人学习所用。 文章目录 超参数调试调试选择范围 Batch归一化公式整合 Softmax 超参数调试 调试 目前学习的一些超参数有学习率 α \alpha α(最重要)、动量梯度下降法 β \bet…...

SQL NOW() 函数详解

SQL NOW() 函数详解 引言 在SQL数据库中,NOW() 函数是一个常用的日期和时间函数,用于获取当前的时间戳。本文将详细介绍 NOW() 函数的用法、参数、返回值以及在实际应用中的注意事项。 函数概述 NOW() 函数返回当前的日期和时间,格式为 Y…...

【JAVA基础】双亲委派

双亲委派可以简单理解为, 当收到加载请求时, 会依次向上加载 ; 只有当父类加载器无法完成加载请求时,子类加载器才会尝试自己去加载。 工作原理 类加载请求传递:当应用程序需要加载一个类时,比如通过ClassLoader.loadClass()方法&#xff0…...

刷题记录 HOT100回溯算法-6:79. 单词搜索

题目:79. 单词搜索 给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻…...

JavaScript系列(52)--编译优化技术详解

JavaScript编译优化技术详解 🚀 今天,让我们深入探讨JavaScript的编译优化技术。通过理解和应用这些技术,我们可以显著提升JavaScript代码的执行效率。 编译优化基础概念 🌟 💡 小知识:JavaScript引擎通常…...

Ollama+DeepSeek本地大模型部署

1、Ollama 官网:https://ollama.com/ Ollama可以干什么? 可以快速在本地部署和管理各种大语言模型,操作命令和dokcer类似。 mac安装ollama: # 安装ollama brew install ollama# 启动ollama服务(默认11434端口&#xf…...

在 WSL2 中重启 Ubuntu 实例

在 WSL2 中重启 Ubuntu 实例,可以按照以下步骤操作: 方法 1: 使用 wsl 命令 关闭 Ubuntu 实例: 打开 PowerShell 或命令提示符,运行以下命令: wsl --shutdown这会关闭所有 WSL2 实例。 重新启动 Ubuntu: 再次打开 Ubuntu&#x…...

【ts + java】古玩系统开发总结

src别名的配置 开发中文件和文件的关系会比较复杂,我们需要给src文件夹一个别名吧 vite.config.js import { defineConfig } from vite import vue from vitejs/plugin-vue import path from path// https://vitejs.dev/config/ export default defineConfig({pl…...

机器学习周报-文献阅读

文章目录 摘要Abstract 1 相关知识1.1 WDN建模1.2 掩码操作(Masking Operation) 2 论文内容2.1 WDN信息的数据处理2.2 使用所收集的数据构造模型2.2.1 Gated graph neural network2.2.2 Masking operation2.2.3 Training loss2.2.4 Evaluation metrics 2…...

LabVIEW微位移平台位移控制系统

本文介绍了基于LabVIEW的微位移平台位移控制系统的研究。通过设计一个闭环控制系统,针对微位移平台的通信驱动问题进行了解决,并提出了一种LabVIEW的应用方案,用于监控和控制微位移平台的位移,从而提高系统的精度和稳定性。 项目背…...

fpga系列 HDL:XILINX Vivado ILA FPGA 在线逻辑分析

ILA为内置逻辑分析仪,通过JTAG与FPGA连接,程序在真实硬件中运行,功能类似Quaruts的SignalTap II 。 ip创建ila 使用ila ip核 timescale 1ns / 1ps module HLSLED(input wire clk ,input wire rst_n ,output wire led);// reg led_o_i 1…...

刷题记录 贪心算法-2:455. 分发饼干

题目:455. 分发饼干 难度:简单 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸&a…...

Android --- CameraX讲解

预备知识 surface surfaceView SurfaceHolder surface 是什么? 一句话来说: surface是一块用于填充图像数据的内存。 surfaceView 是什么? 它是一个显示surface 的View。 在app中仍在 ViewHierachy 中,但在wms 中可以理解为…...

ElasticSearch view

基础知识类 elasticsearch和数据库之间区别? elasticsearch:面向文档,数据以文档的形式存储,即JSON格式的对象。更强调数据的搜索、索引和分析。 数据库:更侧重于事务处理、数据的严格结构化和完整性,适用于…...

list的使用,及部分功能的模拟实现(C++)

目录(文章中"节点"和"结点"是同一个意思) 1. list的介绍及使用 1.1 list的介绍 1.2 list的使用 1.2.1 list的构造 1.2.2 list iterator的使用 1.2.3 list capacity 1.2.4 list element access 1.2.5 list modifiers 1.2.6 list…...

联想Y7000+RTX4060+i7+Ubuntu22.04运行DeepSeek开源多模态大模型Janus-Pro-1B+本地部署

直接上手搓了: conda create -n myenv python3.10 -ygit clone https://github.com/deepseek-ai/Janus.gitcd Januspip install -e .pip install webencodings beautifulsoup4 tinycss2pip install -e .[gradio]pip install pexpect>4.3python demo/app_januspr…...

[Spring] Gateway详解

🌸个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 🏵️热门专栏: 🧊 Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 🍕 Collection与…...

音叉模态分析

目录 0 序言 1 自由状态下模态求解 1.1 添加模态项目 1.2 生成网格 1.3 设置最大模态阶数 1.4 求解 1.5 结果查看 1.6 结果分析 2 音叉能否释放频率440Hz的音调 3 预应力模态求解 3.1 静态结构分析 3.1.1 添加静态结构项目 3.1.2生成网格 3.1.3添加边界条件 3.1…...

BW AO/工作簿权限配置

场景: 按事业部配置工作簿权限; 1、创建用户 事务码:SU01,用户主数据的维护,可以创建、修改、删除、锁定、解锁、修改密码等 用户设置详情页 2、创建权限角色 用户的权限菜单是通过权限角色分配来实现的 2.1、自定…...

C++ 字母大小写转换两种方法统计数字字符的个数

目录 题目: 代码1: 代码2: 题目描述输入一行字符,统计出其中数字字符的个数。 代码如下: 判断⼀个字符是否是数字字符有⼀个函数是 isdigit ,可以直接使⽤。 代码如下: 题目: 大家都知道…...

如何使用 ChatBox AI 简化本地模型对话操作

部署模型请看上一篇帖子:本地部署DeepSeek教程(Mac版本)-CSDN博客 使用 ChatBox AI 简化本地模型对话操作: 打开 ChatBox AI 官网:Chatbox AI官网:办公学习的AI好助手,全平台AI客户端&#xf…...

前端面试笔试题目(一)

以下模拟了大厂前端面试流程,并给出了涵盖HTML、CSS、JavaScript等基础和进阶知识的前端笔试题目,以帮助你更好地准备面试。 面试流程模拟 1. 自我介绍(5 - 10分钟):面试官会请你进行简单的自我介绍,包括…...

Docker Hello World

Docker Hello World 引言 Docker 是一个开源的应用容器引擎,可以让开发者打包他们的应用以及应用的依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。本文将带领您从零开始,学习如何使用 Docker 运行一个简单的 "Hello World"…...

UE 5.3 C++ 对垃圾回收的初步认识

一.UObject的创建 UObject 不支持构造参数。 所有的C UObject都会在引擎启动的时候初始化,然后引擎会调用其默认构造器。如果没有默认的构造器,那么 UObject 将不会编译。 有修改父类参数的需求,就使用指定带参构造 // Sets default value…...

ARM内核:嵌入式时代的核心引擎

引言 在当今智能设备无处不在的时代,ARM(Advanced RISC Machines)处理器凭借其高性能、低功耗的特性,成为智能手机、物联网设备、汽车电子等领域的核心引擎。作为精简指令集(RISC)的典范,ARM核…...

需求分析应该从哪些方面来着手做?

需求分析一般可从以下几个方面着手: 业务需求方面 - 与相关方沟通:与业务部门、客户等进行深入交流,通过访谈、问卷调查、会议讨论等方式,明确他们对项目的期望、目标和整体业务需求,了解项目要解决的业务问题及达成的…...

【Unity2D 2022:C#Script】DoTween插件的使用

一、插件介绍 DOTween 是一个快速、高效、完全类型安全的 Unity 面向对象的动画引擎,针对 C# 用户进行了优化,免费和开源,具有大量高级功能 二、插件的下载 1. DoTween官网:DOTween (HOTween v2) 2. DoTween下载: …...

【Docker】ubuntu中 Docker的使用

之前记录了 docker的安装 【环境配置】ubuntu中 Docker的安装; 本篇博客记录Dockerfile的示例,docker 的使用,包括镜像的构建、容器的启动、docker compose的使用等。   当安装好后,可查看docker的基本信息 docker info ## 查…...

【数据结构篇】时间复杂度

一.数据结构前言 1.1 数据结构的概念 数据结构(Data Structure)是计算机存储、组织数据的⽅式,指相互之间存在⼀种或多种特定关系的数 据元素的集合。没有⼀种单⼀的数据结构对所有⽤途都有⽤,所以我们要学各式各样的数据结构, 如&#xff1a…...

linux 环境安装 dlib 的 gpu 版本

默认使用 pip 安装的 dlib 是不使用 gpu 的 在国内社区用百度查如何安装 gpu 版本的 dlib 感觉信息都不太对,都是说要源码编译还有点复杂 还需要自己安装 cuda 相关的包啥的,看着就头大 于是想到这个因该 conda 自己就支持了吧,然后查了一下…...