[paddle] 矩阵相关的指标
行列式 det
行列式定义参考
d e t ( A ) = ∑ i 1 , i 2 , ⋯ , i n ( − 1 ) σ ( i 1 , ⋯ , i n ) a 1 , i 1 a 2 , i 2 , ⋯ , a n , i n det(A) =\sum_{i_1,i_2,\cdots,i_n } (-1)^{\sigma(i_1,\cdots,i_n)} a_{1,i_1}a_{2,i_2},\cdots, a_{n,i_n} det(A)=i1,i2,⋯,in∑(−1)σ(i1,⋯,in)a1,i1a2,i2,⋯,an,in
i 1 , ⋯ , i n i_1,\cdots,i_n i1,⋯,in 是 1 , ⋯ , n 1,\cdots,n 1,⋯,n 的排列.
参数
x (Tensor):输入一个或批量矩阵。x 的形状应为 [*, M, M],其中 * 为零或更大的批次维度,数据类型支持 float32、float64。
返回
Tensor,输出矩阵的行列式值 Shape 为 [*] 。
多个方阵的行列式
import paddle
paddle.seed(2023)
x = paddle.randn([4,3,3])
A = paddle.linalg.det(x)
print(A)
常用方阵的行列式:
import paddle
paddle.seed(2023)
x = paddle.randn([3,3])
A = paddle.linalg.det(x)
print(A)
矩阵的范数 norm
矩阵的算子范数
矩阵的算子范数(也称为矩阵范数或诱导范数)是衡量矩阵作为线性算子作用在向量上的“放大”程度的一种度量。算子范数依赖于向量范数的定义,常见的算子范数包括以下几种:
- 2-范数(谱范数):
矩阵的2-范数是矩阵最大奇异值或最大特征值的绝对值。对于矩阵 A A A ,2-范数定义为:
∥ A ∥ 2 = σ max ( A ) \|A\|_2 = \sigma_{\max}(A) ∥A∥2=σmax(A)
其中 σ max ( A ) \sigma_{\max}(A) σmax(A) 是矩阵 A A A 的最大奇异值。2-范数也是矩阵作为线性算子在欧几里得空间中最大“拉伸”效果的度量。 - 1-范数:
矩阵的1-范数是矩阵列向量1-范数的最大值。对于矩阵 A A A ,1-范数定义为:
∥ A ∥ 1 = max ∥ x ∥ 1 = 1 ∥ A x ∥ 1 \|A\|_1 = \max_{\|x\|_1 = 1} \|Ax\|_1 ∥A∥1=∥x∥1=1max∥Ax∥1
这实际上是矩阵列向量的绝对和的最大值。 - ∞ \infty ∞-范数(无穷范数):
矩阵的 ∞ \infty ∞-范数是矩阵行向量1-范数的最大值。对于矩阵 A A A , ∞ \infty ∞-范数定义为:
∥ A ∥ ∞ = max ∥ x ∥ ∞ = 1 ∥ A x ∥ ∞ \|A\|_{\infty} = \max_{\|x\|_{\infty} = 1} \|Ax\|_{\infty} ∥A∥∞=∥x∥∞=1max∥Ax∥∞
这实际上是矩阵行向量的绝对和的最大值。 - p-范数:
更一般地,可以定义矩阵的p-范数。对于矩阵 A A A ,p-范数定义为:
∥ A ∥ p = max ∥ x ∥ p = 1 ∥ A x ∥ p \|A\|_p = \max_{\|x\|_p = 1} \|Ax\|_p ∥A∥p=∥x∥p=1max∥Ax∥p
其中 p p p 是一个正实数。当 p = 2 p = 2 p=2 时,就是2-范数(谱范数)。
算子范数的性质:
- 正定性:对于任意矩阵 A A A,都有 ∥ A ∥ ≥ 0 \|A\| \geq 0 ∥A∥≥0,且 ∥ A ∥ = 0 \|A\| = 0 ∥A∥=0 当且仅当 A = 0 A = 0 A=0。
- 齐次性:对于任意矩阵 A A A 和标量 c c c,都有 ∥ c A ∥ = ∣ c ∣ ∥ A ∥ \|cA\| = |c| \|A\| ∥cA∥=∣c∣∥A∥。
- 三角不等式:对于任意矩阵 A A A 和 B B B,都有 ∥ A + B ∥ ≤ ∥ A ∥ + ∥ B ∥ \|A + B\| \leq \|A\| + \|B\| ∥A+B∥≤∥A∥+∥B∥。
- 相容性:对于任意矩阵 A A A 和 B B B,都有 ∥ A B ∥ ≤ ∥ A ∥ ∥ B ∥ \|AB\| \leq \|A\| \|B\| ∥AB∥≤∥A∥∥B∥。
矩阵的核范数
矩阵的核范数(Nuclear Norm)是矩阵理论中的一个重要概念,特别是在低秩矩阵恢复和压缩感知等领域。核范数是矩阵奇异值之和,它可以看作是矩阵的秩的一种凸近似。
对于任意矩阵 A ∈ R m × n A \in \mathbb{R}^{m \times n} A∈Rm×n,其核范数定义为:
∥ A ∥ ∗ = ∑ i = 1 min ( m , n ) σ i ( A ) \|A\|_* = \sum_{i=1}^{\min(m,n)} \sigma_i(A) ∥A∥∗=i=1∑min(m,n)σi(A)
其中, σ i ( A ) \sigma_i(A) σi(A)表示矩阵 A A A 的第 i i i 个奇异值,奇异值是矩阵 A A A 的奇异值分解(SVD)中的非负对角元素。
核范数的一些重要性质包括:
- 凸性:核范数是矩阵秩的凸包络,这意味着它是秩函数的最小凸近似。在优化问题中,使用核范数可以使得问题变得可解,因为秩函数是非凸的,而核范数是凸的。
- ** lipschitz连续性**:核范数是 lipschitz连续的,这意味着对于任意两个矩阵 A A A 和 B B B,存在常数 L L L 使得:
∥ A ∥ ∗ − ∥ B ∥ ∗ ∥ ≤ L ∥ A − B ∥ F \|A\|_* - \|B\|_* \| \leq L \|A - B\|_F ∥A∥∗−∥B∥∗∥≤L∥A−B∥F
其中 ( | \cdot |_F ) 表示 Frobenius 范数。 - 矩阵逼近:在给定矩阵的核范数约束下,最优的低秩逼近可以通过矩阵的奇异值软阈值化实现。这意味着核范数在低秩矩阵逼近问题中起着关键作用。
矩阵的Frobenius范数
矩阵的F范数,也称为Frobenius范数,是矩阵元素平方和的平方根。它将矩阵视为一个长向量,并计算其欧几里得范数。对于任意矩阵 A ∈ R m × n A \in \mathbb{R}^{m \times n} A∈Rm×n,其Frobenius范数定义为:
∥ A ∥ F = ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ 2 \|A\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2} ∥A∥F=i=1∑mj=1∑n∣aij∣2
其中, a i j a_{ij} aij 表示矩阵 A A A 的第 i i i 行第 j j j 列的元素。
Frobenius范数的一些重要性质包括:
- 与核范数的关系:对于任意矩阵 A A A,有 ∥ A ∥ ∗ ≤ ∥ A ∥ F \|A\|_* \leq \|A\|_F ∥A∥∗≤∥A∥F,其中 ∥ A ∥ ∗ \|A\|_* ∥A∥∗表示矩阵的核范数。
- 与2-范数的关系:对于矩阵 A A A ,其Frobenius范数等于其向量化的2-范数,即 ∥ A ∥ F = ∥ v e c ( A ) ∥ 2 \|A\|_F = \|vec(A)\|_2 ∥A∥F=∥vec(A)∥2,其中 v e c ( A ) vec(A) vec(A) 表示将矩阵 A A A 按列堆叠成向量。
paddle.linalg.norm(x, p=None, axis=None, keepdim=False, name=None)
将计算给定 Tensor 的矩阵范数(Frobenius 范数, Nuclear 范数或 p 范数)和向量范数(向量 1 范数、2 范数、或者通常的 p 范数)。
该函数计算的是向量范数还是矩阵范数,确定方法如下: - 如果 axis 是 int 类型,计算向量范数 - 如果 axis 是二维数组,计算矩阵范数 - 如果 axis 为 None,x 会被压缩成一维向量然后计算向量范数
Paddle 支持以下范数:
参数
x (Tensor) - 输入 Tensor。维度为多维,数据类型为 float32 或 float64。
p (int|float|string,可选) - 范数(ord)的种类。目前支持的值为fro(Frobenius范数) 、 nuc(核范数)、inf、-inf、0、1、2,和任何实数 p 对应的 p 范数。默认值为 None。
axis (int|list|tuple,可选) - 使用范数计算的轴。如果 axis 为 None,则忽略 input 的维度,将其当做向量来计算。如果 axis 为 int 或者只有一个元素的 list|tuple,norm API 会计算输入 Tensor 的向量范数。如果 axis 为包含两个元素的 list,API 会计算输入 Tensor 的矩阵范数。当 axis < 0 时,实际的计算维度为 rank(input) + axis。默认值为 None 。
keepdim (bool,可选) - 是否在输出的 Tensor 中保留和输入一样的维度,默认值为 False。当 keepdim 为 False 时,输出的 Tensor 会比输入 input 的维度少一些。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
返回
Tensor,在指定 axis 上进行范数计算的结果,与输入 input 数据类型相同。
import paddle
x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
print(x)# compute frobenius norm along last two dimensions.
out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
print(out_fro)# compute 2-order vector norm along last dimension.
out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
print(out_pnorm)# compute 2-order norm along [0,1] dimension.
out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
print(out_pnorm)# compute inf-order norm
out_pnorm = paddle.linalg.norm(x, p=float("inf"))
print(out_pnorm)out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
print(out_pnorm)# compute -inf-order norm
out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
print(out_pnorm)out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
print(out_pnorm)
条件数 cond
c o n d ( A , p ) = sup x ≠ 0 ∥ A ∥ p ∥ A − 1 ∥ p \mathrm{cond}(A,p) =\sup_{x\neq 0} \frac{\|A\|_p}{\|A^{-1}\|_p} cond(A,p)=x=0sup∥A−1∥p∥A∥p
其中 ∥ ⋅ ∥ p \| \cdot \|_p ∥⋅∥p 是矩阵的 p p p 范数。
根据范数种类 p 计算一个或一批矩阵的条件数,也可以通过 paddle.cond 来调用。
参数
x (Tensor):输入可以是形状为 (, m, n) 的矩阵 Tensor, * 为零或更大的批次维度,此时 p 为 2 或 -2;也可以是形状为 (, n, n) 的可逆(批)方阵 Tensor,此时 p 为任意已支持的值。数据类型为 float32 或 float64 。
p (float|string,可选):范数种类。目前支持的值为 fro(Frobenius范数) 、 nuc(核范数) 、 1 、 -1 、 2 、 -2 、 inf 、 -inf。默认值为 None,即范数种类为 2 。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
返回
Tensor,条件数的计算结果,数据类型和输入 x 的一致。
import paddle
paddle.seed(2023)
x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])# compute conditional number when p is None
out = paddle.linalg.cond(x)
print(out)# compute conditional number when order of the norm is 'fro'
out_fro = paddle.linalg.cond(x, p='fro')
print(out_fro)# compute conditional number when order of the norm is 'nuc'
out_nuc = paddle.linalg.cond(x, p='nuc')
print(out_nuc)# compute conditional number when order of the norm is 1
out_1 = paddle.linalg.cond(x, p=1)
print(out_1)# compute conditional number when order of the norm is -1
out_minus_1 = paddle.linalg.cond(x, p=-1)
print(out_minus_1)# compute conditional number when order of the norm is 2
out_2 = paddle.linalg.cond(x, p=2)
print(out_2)# compute conditional number when order of the norm is -1
out_minus_2 = paddle.linalg.cond(x, p=-2)
print(out_minus_2)# compute conditional number when order of the norm is inf
out_inf = paddle.linalg.cond(x, p=float("inf"))
print(out_inf)# compute conditional number when order of the norm is -inf
out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
print(out_minus_inf)a = paddle.randn([2, 4, 4])
print(a)a_cond_fro = paddle.linalg.cond(a, p='fro')
print(a_cond_fro)b = paddle.randn([2, 3, 4])
print(b)b_cond_2 = paddle.linalg.cond(b, p=2)
print(b_cond_2)
矩阵的秩
线性无关性的定义
一组向量被称为线性无关,如果其中没有任何一个向量可以表示为其他向量的线性组合, 例如
α 1 = ∑ i = 2 n k i α i \alpha_1 = \sum_{i=2}^n k_i\alpha_i α1=∑i=2nkiαi。
矩阵的行向量组和列向量组
给定一个 m × n m \times n m×n 矩阵 A A A ,它包含 m m m 个行向量和 n n n 个列向量。
极大线性无关组
在一组向量中,极大线性无关组是指包含最多线性无关向量的子集。添加任何额外的向量都会使该组变得线性相关。
矩阵的秩的定义
矩阵 A A A 的秩是指其行向量组或列向量组中极大线性无关组的大小。
矩阵的行秩等于其列秩,统称为矩阵的秩。
import paddlea = paddle.eye(10)
b = paddle.linalg.matrix_rank(a)
print(b)c = paddle.ones(shape=[3, 4, 5, 5])
d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
print(d)
相关文章:

[paddle] 矩阵相关的指标
行列式 det 行列式定义参考 d e t ( A ) ∑ i 1 , i 2 , ⋯ , i n ( − 1 ) σ ( i 1 , ⋯ , i n ) a 1 , i 1 a 2 , i 2 , ⋯ , a n , i n det(A) \sum_{i_1,i_2,\cdots,i_n } (-1)^{\sigma(i_1,\cdots,i_n)} a_{1,i_1}a_{2,i_2},\cdots, a_{n,i_n} det(A)i1,i2,⋯,in…...

docker部署SpringBoot项目简单流程
一、docker基础命令理解学习 1、常见命令 docker启动之前要关闭防火墙systemctl stop firewalld # 关闭防火墙systemctl disable firewalld # 禁止开机启动防火墙systemctl start docker # 启动docker服务systemctl stop docker # 停止docker服务systemctl restart docker # …...

Python学习——函数参数详解
Python中的函数参数传递机制允许多种灵活的参数类型,可以根据需求灵活配置参数,这使得函数具有更强大的扩展性和适应性。以下是对各类参数类型的详细说明: 1. 定义函数的不同参数类型 1.1 位置参数 定义方式:def func(a, b2) 特…...

Chromium132 编译指南 - Android 篇(一):编译前准备
1. 引言 欢迎来到《Chromium 132 编译指南 - Android 篇》系列的第一部分。本系列指南将引导您逐步完成在 Android 平台上编译 Chromium 132 版本的全过程。Chromium 作为一款由 Google 主导开发的开源浏览器引擎,为众多现代浏览器提供了核心驱动力。而 Android 作…...

.Net / C# 繁体中文 与 简体中文 互相转换, 支持地方特色词汇
版本号 Nuget 搜索 “OpenCCNET”, 注意别找错, 好多库的名字都差不多 支持 “繁,简” 的互相转换, 支持多个地区常用词汇的转换, 还支持 日文的新旧转换. OpenCC 在 .Net 中的实现 https://github.com/CosineG/OpenCC.NET <PackageReference Include"OpenCCNET"…...

Java泛型深度解析(JDK23)
第一章 泛型革命 1.1 类型安全的进化史 前泛型时代的类型转换隐患 代码的血泪史(Java 1.4版示例): List rawList new ArrayList(); rawList.add("Java"); rawList.add(Integer.valueOf(42)); // 编译通过// 灾难在运行时爆发…...

【贪心算法篇】:“贪心”之旅--算法练习题中的智慧与策略(一)
✨感谢您阅读本篇文章,文章内容是个人学习笔记的整理,如果哪里有误的话还请您指正噢✨ ✨ 个人主页:余辉zmh–CSDN博客 ✨ 文章所属专栏:贪心算法篇–CSDN博客 文章目录 一.贪心算法1.什么是贪心算法2.贪心算法的特点 二.例题1.柠…...

AJAX XML
AJAX XML 引言 随着互联网技术的不断发展,Web应用对用户交互性和实时性的要求越来越高。AJAX(Asynchronous JavaScript and XML)技术的出现,为Web应用开发提供了强大的支持。AJAX技术允许Web应用在不重新加载整个页面的情况下,与服务器进行异步通信。XML作为数据传输格式…...

踏入编程世界的第一个博客
我,一个双非一本大一新生,普通的不能再普通了,面对宏伟庞大的计算机世界仍显得举手无措,我自以为自身仍有些许骨气,不想普普通通,甚是浑浑噩噩的度过四年大学,经历了高考的打击,双非…...

2025年1月22日(网络编程 udp)
系统信息: ubuntu 16.04LTS Raspberry Pi Zero 2W 系统版本: 2024-10-22-raspios-bullseye-armhf Python 版本:Python 3.9.2 已安装 pip3 支持拍摄 1080p 30 (1092*1080), 720p 60 (1280*720), 60/90 (640*480) 已安装 vim 已安装 git 学习…...

数据结构与算法之栈: LeetCode 641. 设计循环双端队列 (Ts版)
设计循环双端队列 https://leetcode.cn/problems/design-circular-deque/description/ 描述 设计实现双端队列。 实现 MyCircularDeque 类: MyCircularDeque(int k) :构造函数,双端队列最大为 k 。boolean insertFront():将一个元素添加到双端队列头部…...

从零开始学 HTML:构建网页的基本框架与技巧
系列文章目录 01-从零开始学 HTML:构建网页的基本框架与技巧 文章目录 系列文章目录前言一、HTML 文档的基本框架1.1 <!DOCTYPE html>、<html>、<head>、<body> 标签解析1.1.1 <!DOCTYPE html> 标签1.1.2 <html> 标签1.1.3 &l…...

一些杂记2
1.#define 1.1定义 #define 是一个预处理指令,用于定义宏 宏,是预处理阶段(在编译之前)由预处理器处理的代码片段 1.2使用 1.2.1 #define 可以定义常量 #define PI 3.14159 1.2.2 #define 可以定义宏函数 #define SQUARE(x) ((…...

C语言 --- 分支
C语言 --- 分支 语句分支语句含义if...else语句单分支if语句语法形式 双分支 if-else 语句语法形式 悬空else含义问题描述 多分支 if-else 语句语法形式 switch...case语句含义语法形式 总结 💻作者简介:曾与你一样迷茫,现以经验助你入门 C 语…...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.10 ndarray内存模型:从指针到缓存优化
2.10 ndarray内存模型:从指针到缓存优化 目录 #mermaid-svg-p0zxLYqAnn59O2Xe {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-p0zxLYqAnn59O2Xe .error-icon{fill:#552222;}#mermaid-svg-p0zxLYqAnn59O…...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.6 广播机制核心算法:维度扩展的数学建模
2.6 广播机制核心算法:维度扩展的数学建模 目录/提纲 #mermaid-svg-IfELXmhcsdH1tW69 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-IfELXmhcsdH1tW69 .error-icon{fill:#552222;}#mermaid-svg-IfELXm…...

K8S极简教程(4小时快速学会)
1. K8S 概览 1.1 K8S 是什么 K8S官网文档:https://kubernetes.io/zh/docs/home/ 1.2 K8S核心特性 服务发现与负载均衡:无需修改你的应用程序即可使用陌生的服务发现机制。存储编排:自动挂载所选存储系统,包括本地存储。Secret和…...

系统URL整合系列视频二(界面原型)
视频 系统URL整合系列视频二(界面原型) 视频介绍 (全国)大型分布式系统Web资源URL整合需求界面原型讲解。当今社会各行各业对软件系统的web资源访问权限控制越来越严格,控制粒度也越来越细。安全级别提高的同时也增加…...

虚幻浏览器插件 UE与JS通信
温馨提示:本节内容需要结合插件Content下的2_Communication和Resources下的sample.html 一起阅读。 1. UE调用JS 1.1 JS脚本实现 该部分共两步: 导入jstote.js脚本实现响应函数并保存到 ue.interface 中 jsfunc 通过json对象传递参数,仅支持函数名小…...

OpenAI深夜反击:o3-mini免费上线,能否撼动DeepSeek的地位?
还在为寻找合适的 AI 模型而烦恼吗?chatTools 平台为您精选 o1、GPT4o、Claude、Gemini 等顶尖 AI 模型,满足您不同的 AI 应用需求。立即体验强大的 AI 能力! 深夜反击,OpenAI祭出o3-mini 在DeepSeek异军突起,搅动AI行…...

Golang 应用的 Docker 部署方式介绍及使用详解
本文将介绍如何使用 Docker 部署一个基于 Go 语言的后台服务应用 godco,并介绍如何配置 MongoDB 数据库容器的连接,确保应用能够成功启动并连接到容器方式部署的mongoDB数据库。 前提条件 1.已安装 Docker/Podman 2.已安装 MongoDB 数据库容器ÿ…...

deep seek R1本地化部署及openAI API调用
先说几句题外话。 最近deep seek火遍全球,所以春节假期期间趁着官网优惠充值了deep seek的API,用openAI的接口方式尝试了下对deep seek的调用,并且做了个简单测试,测试内容确实非常简单:通过prompt提示词让大模型对用…...

力扣第435场周赛讲解
文章目录 题目总览题目详解3442.奇偶频次间的最大差值I3443.K次修改后的最大曼哈顿距离3444. 使数组包含目标值倍数的最少增量3445.奇偶频次间的最大差值 题目总览 奇偶频次间的最大差值I K次修改后的最大曼哈顿距离 使数组包含目标值倍数的最少增量 奇偶频次间的最大差值II …...

初入机器学习
写在前面 本专栏专门撰写深度学习相关的内容,防止自己遗忘,也为大家提供一些个人的思考 一切仅供参考 概念辨析 深度学习: 本质是建模,将训练得到的模型作为系统的一部分使用侧重于发现样本集中隐含的规律难点是认识并了解模型&…...

Signature
Signature 题目是: import ecdsaimport randomdef ecdsa_test(dA,k):sk ecdsa.SigningKey.from_secret_exponent(secexpdA,curveecdsa.SECP256k1)sig1 sk.sign(databHi., kk).hex()sig2 sk.sign(databhello., kk).hex()#不同的kr1 int(sig1[:64], 16)s1 i…...

93,【1】buuctf web [网鼎杯 2020 朱雀组]phpweb
进入靶场 页面一直在刷新 在 PHP 中,date() 函数是一个非常常用的处理日期和时间的函数,所以应该用到了 再看看警告的那句话 Warning: date(): It is not safe to rely on the systems timezone settings. You are *required* to use the date.timez…...
笔灵ai写作技术浅析(四):知识图谱
知识图谱(Knowledge Graph)是一种结构化的知识表示方式,通过将知识以图的形式进行组织,帮助AI系统更好地理解和利用信息。在笔灵AI写作中,知识图谱技术被广泛应用于结构化组织各种领域的知识,使AI能够根据写作主题快速获取相关的背景知识、概念关系等,从而为生成内容提供…...

Chromium132 编译指南 - Android 篇(四):配置 depot_tools
1. 引言 在前面的章节中,我们详细介绍了编译 Chromium 132 for Android 所需的系统和硬件要求,以及如何安装和配置基础开发环境和常用工具。完成这些步骤后,接下来需要配置 depot_tools,这是编译 Chromium 的关键工具集。depot_t…...

使用真实 Elasticsearch 进行高级集成测试
作者:来自 Elastic Piotr Przybyl 掌握高级 Elasticsearch 集成测试:更快、更智能、更优化。 在上一篇关于集成测试的文章中,我们介绍了如何通过改变数据初始化策略来缩短依赖于真实 Elasticsearch 的集成测试的执行时间。在本期中࿰…...

SQL进阶实战技巧:如何分析浏览到下单各步骤转化率及流失用户数?
目录 0 问题描述 1 数据准备 2 问题分析 3 问题拓展 3.1 跳出率计算...