当前位置: 首页 > news >正文

深度学习——torch相关函数用法解析

1. torch.ones()

torch.ones(*sizes, out=None) → Tensor

函数功能:返回一个全为1 的张量,形状由可变参数sizes定义。
参数:
sizes (int…) – 整数序列,定义了输出形状
out (Tensor, optional) – 结果张量
例子:

>>> torch.ones(2, 3)1  1  11  1  1
[torch.FloatTensor of size 2x3]>>> torch.ones(5)11111
[torch.FloatTensor of size 5]

2. torch.add()

torch.add(input, value, out=None)
对输入张量input逐元素加上标量值value,并返回结果到一个新的张量out,即 out=tensor+value。torch.add(input, value=1, other, out=None)
other 张量的每个元素乘以一个标量值value,并加到iput 张量上。返回结果到输出张量out。即,out=input+(other∗value)两个张量 input and other的尺寸不需要匹配,但元素总数必须一样。注意 :当两个张量形状不匹配时,输入张量的形状会作为输出张量的尺寸。

3. torch.zeros()

torch.zeros(*sizes, out=None) → Tensor

返回一个全为标量 0 的张量,形状由可变参数sizes 定义。
参数:
sizes (int…) – 整数序列,定义了输出形状
out (Tensor, optional) – 结果张量
例子:

>>> torch.zeros(2, 3)0  0  00  0  0
[torch.FloatTensor of size 2x3]生成2*3的张量矩阵>>> torch.zeros(5)00000
[torch.FloatTensor of size 5]x=torch.zeros(2,3,4)
print(x)tensor([[[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 0., 0.]],[[0., 0., 0., 0.],[0., 0., 0., 0.],[0., 0., 0., 0.]]])生成23*4的矩阵x=torch.zeros(2,3,4,5)
print(x)tensor([[[[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.]],[[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.]],[[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.]]],[[[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.]],[[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.]],[[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.],[0., 0., 0., 0., 0.]]]])
从后向前看,最后两位为数组的维度4*5,前一位3表示有34*5的矩阵,在前一位2表示,这样34*5的矩阵有2个,以此类推

4.torch.squeeze()

torch.squeeze(input, dim=None, out=None)

函数功能:
将输入张量形状中的1 去除并返回。 如果输入是形如(A×1×B×1×C×1×D),那么输出形状就为: (A×B×C×D)
当给定dim时,那么挤压操作只在给定维度上。例如,输入形状为: (A×1×B), squeeze(input, 0)
将会保持张量不变,只有用 squeeze(input, 1),形状会变成 (A×B)。

注意:
返回张量与输入张量共享内存,所以改变其中一个的内容会改变另一个。

参数:
input (Tensor) – 输入张量
dim (int, optional) – 如果给定,则input只会在给定维度挤压
out (Tensor, optional) – 输出张量

例子:

>>> x = torch.zeros(2,1,2,1,2)
>>> x.size()
(2L, 1L, 2L, 1L, 2L)
>>> y = torch.squeeze(x)
>>> y.size()
(2L, 2L, 2L)
>>> y = torch.squeeze(x, 0)
>>> y.size()
(2L, 1L, 2L, 1L, 2L)
>>> y = torch.squeeze(x, 1)
>>> y.size()
(2L, 2L, 1L, 2L)

参考自:https://blog.csdn.net/qq_42518956/article/details/103876885

相关文章:

深度学习——torch相关函数用法解析

1. torch.ones() torch.ones(*sizes, outNone) → Tensor函数功能:返回一个全为1 的张量,形状由可变参数sizes定义。 参数: sizes (int…) – 整数序列,定义了输出形状 out (Tensor, optional) – 结果张量 例子: >>> …...

ubuntu 20使用kubeadm安装k8s 1.26

步骤 机器:4核8G,root账号,可访问互联网 1、更新apt apt-get update 2、安装一些基本工具 apt-get install ca-certificates curl gnupg lsb-release net-tools apt-transport-https 3、ifconfig 获取ip,hostname获取主机名&…...

低代码开发平台|制造管理-生产过程管理搭建指南

1、简介1.1、案例简介本文将介绍,如何搭建制造管理-生产过程。1.2、应用场景先填充工序信息,再设置工艺路线对应的工序;工序信息及工艺路线列表报表展示的是所有工序、工艺路线信息,可进行新增对应数据的操作。2、设置方法2.1、表…...

python对多个csv文件进行合并(表头需一致)

之前写过python对【多个Excel文件】中的【单个sheet】进行合并,参考:点我 之前也写过python对【多个Excel文件】中的【多个sheet】进行合并,参考:点我 今天再写一个python对多个csv格式的文件进行合并的小工具 但是大家切记&am…...

Salesforce Apex调用邮件模板

正常调用无模板&#xff1a;mail.setToAddresses(new List<String>{user.Email});//mail.setReplyTo(444298824qq.com);//mail.setCcAddresses(null);mail.setSenderDisplayName(EOP系统);mail.setSubject(EOP通知&#xff08;待审批&#xff09;&#xff1a;您有未处理的…...

windows本地开发Spark[不开虚拟机]

1. windows本地安装hadoop hadoop 官网下载 hadoop2.9.1版本 1.1 解压缩至C:\XX\XX\hadoop-2.9.1 1.2 下载动态链接库和工具库 1.3 将文件winutils.exe放在目录C:\XX\XX\hadoop-2.9.1\bin下 1.4 将文件hadoop.dll放在目录C:\XX\XX\hadoop-2.9.1\bin下 1.5 将文件hadoop.dl…...

一文教你快速估计个股交易成本

交易本身对市场会产生影响&#xff0c;尤其是短时间内大量交易&#xff0c;会影响金融资产的价格。一个订单到来时的市场价格和订单的执行价格通常会有差异&#xff0c;这个差异通常被称为交易成本。在量化交易的策略回测部分&#xff0c;不考虑交易成本或者交易成本估计不合理…...

Leetcode—移除元素、删除有序数组中的重复项、合并两个有序数组

移除元素 此题简单&#xff0c;用双指针方法即可&#xff0c; 如果右指针指向的元素不等于val&#xff0c;它一定是输出数组的一个元素&#xff0c;我们就将右指针指向的元素复制到左指针位置&#xff0c;然后将左右指针同时右移&#xff1b; 如果右指针指向的元素等于 val&…...

面试(十)大疆 安全开发 C++1面

1. 在C++开发中定义一个变量,若不做初始化直接使用会怎样? 如果该变量是一个普通变量,则如果对其进行访问,会返回一个随机值,int类型不一定为0,bool类型也不一定为false 如果该变量为一个静态变量,则初始值都是一个0; 如果该变量是一个指针,那么在后续程序运行中很…...

短信链接跳转微信小程序

短信链接跳转微信小程序1 实现方案1.1 通过URL Scheme实现1.2 通过URL Link实现1.3 通过云开发静态网站实现2 实现方案对比3 实践 URL Schema 方案3.1 获取微信access_token3.2 获取openlink3.3 H5页面&#xff08;模拟短信跳转&#xff0c;验证ok&#xff09;4 问题小节4.1 io…...

吉林电视台启用乾元通多卡聚合系统广电视频传输解决方案

随着广播电视数字化、IP化、智能化的逐步深入&#xff0c;吉林电视台对技术改造、数字设备升级提出了更高要求&#xff0c;通过对系统性能、设计理念的综合评估&#xff0c;正式启用乾元通多卡聚合系统广电视频传输解决方案&#xff0c;将用于大型集会、大型演出、基层直播活动…...

Linux常用命令1

目录1、远程登陆服务器2、文件相关&#xff08;1&#xff09;文件和目录属性&#xff08;2&#xff09;创建目录mkdir&#xff08;3&#xff09;删除目录rmdir&#xff08;4&#xff09;创建文件touch&#xff08;5&#xff09;删除文件或目录rm&#xff08;6&#xff09;ls命令…...

【C++进阶】一、继承(总)

目录 一、继承的概念及定义 1.1 继承概念 1.2 继承定义 1.3 继承基类成员访问方式的变化 二、基类和派生类对象赋值转换 三、继承中的作用域 四、派生类的默认成员函数 五、继承与友元 六、继承与静态成员 七、菱形继承及菱形虚拟继承 7.1 继承的分类 7.2 菱形虚拟…...

AttributeError: module ‘lib‘ has no attribute ‘OpenSSL_add_all_algorithms

pip安装crackmapexec后,运行crackmapexec 遇到报错 AttributeError: module lib has no attribute OpenSSL_add_all_algorithms 直接安装 pip3 install crackmapexec 解决 通过 python3 -m pip install --upgrade openssl 或者 python3 -m pip install openssl>22.1.…...

Python实现视频自动打码功能,避免看到羞羞的画面

前言 嗨呀嗨呀&#xff0c;最近重温了一档综艺节目 至于叫什么 这里就不细说了 老是看着看着就会看到一堆马赛克&#xff0c;由于太好奇了就找了一下原因&#xff0c;结果是因为某艺人塌房了…虽然但是 看综艺的时候满影响美观的 咳咳&#xff0c;这里我可不是来教你们如何解…...

说说Knife4j

Knife4j是一款基于Swagger2的在线API文档框架使用Knife4j, 需要 添加Knife4j的依赖当前建议使用的Knife4j版本, 只适用于Spring Boot2.6以下版本, 不含Spring Boot2.6 在主配置文件(application.yml)中开启Knife4j的增强模式必须在主配置文件中进行配置, 不要配置在个性化配置文…...

Java学习笔记-03(API阶段-2)集合

集合 我们接下来要学习的内容是Java基础中一个很重要的部分&#xff1a;集合 1. Collection接口 1.1 前言 Java语言的java.util包中提供了一些集合类,这些集合类又称之为容器 提到容器不难想到数组,集合类与数组最主要的不同之处是,数组的长度是固定的,集合的长度是可变的&a…...

「3」线性代数(期末复习)

&#x1f680;&#x1f680;&#x1f680;大家觉不错的话&#xff0c;就恳求大家点点关注&#xff0c;点点小爱心&#xff0c;指点指点&#x1f680;&#x1f680;&#x1f680; 矩阵的秩 定义4:在mxn矩阵A中&#xff0c;任取k行与k列&#xff08;k<m,k<n&#xff09;,位…...

【CSDN竞赛】27期题解(Javascript)

前言 本来排名是20的&#xff0c;不过第一题有点输出bug&#xff0c;最后实际测出来又重新排名&#xff0c;刚好卡在第10。但是考试报告好像过了12小时就下载不到了&#xff0c;所以就只写题目求解的JS函数吧。 1. 幸运数字 小艺定义一个幸运数字的标准包含3条: 仅包含4或7幸…...

高压放大器在骨的逆力电研究中的应用

实验名称&#xff1a;高压放大器在骨的逆力电研究中的应用研究方向&#xff1a;生物医学测试目的&#xff1a;骨中的胶原和羟基磷灰石沿厚度分布不均匀&#xff0c;骨试样在直流电压作用下&#xff0c;内部出现传导电流引起试样内部温度升高&#xff0c;不同组分热变形不一致&a…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

sshd代码修改banner

sshd服务连接之后会收到字符串&#xff1a; SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢&#xff1f; 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头&#xff0c…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理&#xff1a;检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目&#xff1a;RankRAG&#xff1a;Unifying Context Ranking…...

MeshGPT 笔记

[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭&#xff01;_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...

C++11 constexpr和字面类型:从入门到精通

文章目录 引言一、constexpr的基本概念与使用1.1 constexpr的定义与作用1.2 constexpr变量1.3 constexpr函数1.4 constexpr在类构造函数中的应用1.5 constexpr的优势 二、字面类型的基本概念与使用2.1 字面类型的定义与作用2.2 字面类型的应用场景2.2.1 常量定义2.2.2 模板参数…...