MySQl学习(从入门到精通15)
MySQl学习(从入门到精通15)
- 第 18 章_MySQL 8 其它新特性
- 1. MySQL 8 新特性概述
- 1. 1 MySQL 8. 0 新增特性
- 1. 2 MySQL 8. 0 移除的旧特性
- 2. 新特性 1 :窗口函数
- 2. 1 使用窗口函数前后对比
- 2. 2 窗口函数分类
- 2. 3 语法结构
- 2. 4 分类讲解
- 1. 序号函数
- 2. 分布函数
- 3. 前后函数
- 4. 首尾函数
- 6. 其他函数
- 2. 5 小 结
- 3. 新特性 2 :公用表表达式
- 3. 1 普通公用表表达式
- 3. 2 递归公用表表达式
- 3. 3 小 结
总目录层级
1.MySQl学习(从入门到精通 1)
1.1 数据库概述
1.2 MYSQL环境搭建
1.3 基本select语句
2.MySQl学习(从入门到精通 2)
2.1 运算符
2.2 排序与分页
MySQl学习(从入门到精通 3)
3.1 多表查询
3.2 SQL99语法新特性
MySQl学习(从入门到精通 4)
4.1 单行函数
MySQl学习(从入门到精通 5)
5.1 聚合函数
MySQl学习(从入门到精通 6)
6.1 子查询
MySQl学习(从入门到精通 7)
7.1 创建和管理表
MySQl学习(从入门到精通 8)
8.1 数据处理之增删改
MySQl学习(从入门到精通 9)
9.1MySQL数据类型精讲
MySQl学习(从入门到精通10)
10.1约束
MySQl学习(从入门到精通11)
11.1视图
MySQl学习(从入门到精通12)
12.1存储过程与函数
MySQl学习(从入门到精通13)
13.1变量、流程控制与游标
MySQl学习(从入门到精通14)
14.1 触发器
MySQl学习(从入门到精通15)
15.1MySQL 8 其它新特性
THIS IS END!
第 18 章_MySQL 8 其它新特性
官网: http://www.atguigu.com
1. MySQL 8 新特性概述
MySQL从5.7版本直接跳跃发布了8.0版本
,可见这是一个令人兴奋的里程碑版本。MySQL 8版本在功能上做了显著的改进与增强,开发者对MySQL的源代码进行了重构,最突出的一点是多MySQL Optimizer优化器进行了改进。不仅在速度上得到了改善,还为用户带来了更好的性能和更棒的体验。
1. 1 MySQL 8. 0 新增特性
1. 更简便的NoSQL支持 NoSQL泛指非关系型数据库和数据存储。随着互联网平台的规模飞速发展,传统的关系型数据库已经越来越不能满足需求。从5.6版本开始,MySQL就开始支持简单的NoSQL存储功能。MySQL 8对这一功能做了优化,以更灵活的方式实现NoSQL功能,不再依赖模式(schema)。
2. 更好的索引 在查询中,正确地使用索引可以提高查询的效率。MySQL 8中新增了隐藏索引和降序索引。隐藏索引可以用来测试去掉索引对查询性能的影响。在查询中混合存在多列索引时,使用降序索引可以提高查询的性能。
3 .更完善的JSON支持 MySQL从5.7开始支持原生JSON数据的存储,MySQL 8对这一功能做了优化,增加了聚合函数JSON_ARRAYAGG()
和JSON_OBJECTAGG()
,将参数聚合为JSON数组或对象,新增了行内操作符 ->>,是列路径运算符 ->的增强,对JSON排序做了提升,并优化了JSON的更新操作。
4 .安全和账户管理 MySQL 8中新增了caching_sha2_password 授权插件、角色、密码历史记录和FIPS模式支持,这些特性提高了数据库的安全性和性能,使数据库管理员能够更灵活地进行账户管理工作。
5 .InnoDB的变化 InnoDB是MySQL默认的存储引擎
,是事务型数据库的首选引擎,支持事务安全表(ACID),支持行锁定和外键。在MySQL 8 版本中,InnoDB在自增、索引、加密、死锁、共享锁等方面做了大量的改进和优化
,并且支持原子数据定义语言(DDL),提高了数据安全性,对事务提供更好的支持。
6 .数据字典 在之前的MySQL版本中,字典数据都存储在元数据文件和非事务表中。从MySQL 8开始新增了事务数据字典,在这个字典里存储着数据库对象信息,这些数据字典存储在内部事务表中。
7. 原子数据定义语句 MySQL 8开始支持原子数据定义语句(Automic DDL),即原子DDL。目前,只有InnoDB存储引擎支持原子DDL。原子数据定义语句(DDL)将与DDL操作相关的数据字典更新、存储引擎操作、二进制日志写入结合到一个单独的原子事务中,这使得即使服务器崩溃,事务也会提交或回滚。
使用支持原子操作的存储引擎所创建的表,在执行DROP TABLE、CREATE TABLE、ALTER TABLE、
RENAME TABLE、TRUNCATE TABLE、CREATE TABLESPACE、DROP TABLESPACE等操作时,都支持原子操
作,即事务要么完全操作成功,要么失败后回滚,不再进行部分提交。 对于从MySQL 5.7复制到MySQL 8版本中的语句,可以添加IF EXISTS或IF NOT EXISTS
语句来避免发生错误。
8 .资源管理 MySQL 8开始支持创建和管理资源组,允许将服务器内运行的线程分配给特定的分组,以便线程根据组内可用资源执行。组属性能够控制组内资源,启用或限制组内资源消耗。数据库管理员能够根据不同的工作负载适当地更改这些属性。 目前,CPU时间是可控资源,由“虚拟CPU”这个概念来表示,此术语包含CPU的核心数,超线程,硬件线程等等。服务器在启动时确定可用的虚拟CPU数量。拥有对应权限的数据库管理员可以将这些CPU与资源组关联,并为资源组分配线程。 资源组组件为MySQL中的资源组管理提供了SQL接口。资源组的属性用于定义资源组。MySQL中存在两个默认组,系统组和用户组,默认的组不能被删除,其属性也不能被更改。对于用户自定义的组,资源组创建时可初始化所有的属性,除去名字和类型,其他属性都可在创建之后进行更改。 在一些平台下,或进行了某些MySQL的配置时,资源管理的功能将受到限制,甚至不可用。例如,如果安装了线程池插件,或者使用的是macOS系统,资源管理将处于不可用状态。在FreeBSD和Solaris系统中,资源线程优先级将失效。在Linux系统中,只有配置了CAP_SYS_NICE属性,资源管理优先级才能发挥作用。
9 .字符集支持 MySQL 8中默认的字符集由latin1更改为utf8mb4,并首次增加了日语所特定使用的集
合,utf8mb4_ja_0900_as_cs。
10 .优化器增强 MySQL优化器开始支持隐藏索引和降序索引。隐藏索引不会被优化器使用,验证索引的必要性时不需要删除索引,先将索引隐藏,如果优化器性能无影响就可以真正地删除索引。降序索引允许优化器对多个列进行排序,并且允许排序顺序不一致。
11 .公用表表达式 公用表表达式(Common Table Expressions)简称为CTE,MySQL现在支持递归和非递
归两种形式的CTE。CTE通过在SELECT语句或其他特定语句前使用WITH语句对临时结果集进行命名。基础语法如下:
WITH cte_name (col_name1,col_name2 ...) AS (Subquery)
SELECT * FROM cte_name;
Subquery代表子查询,子查询前使用WITH语句将结果集命名为cte_name,在后续的查询中即可使用cte_name进行查询。
12 .窗口函数 MySQL 8开始支持窗口函数。在之前的版本中已存在的大部分聚合函数在MySQL 8中也可以作为窗口函数来使用。
13 .正则表达式支持 MySQL在8.0.4以后的版本中采用支持Unicode的国际化组件库实现正则表达式操作,这种方式不仅能提供完全的Unicode支持,而且是多字节安全编码。MySQL增加了REGEXP_LIKE()、EGEXP_INSTR()、 REGEXP_REPLACE()和 REGEXP_SUBSTR()等函数来提升性能。另外,regexp_stack_limit和regexp_time_limit 系统变量能够通过匹配引擎来控制资源消耗。
14 .内部临时表 TempTable存储引擎取代MEMORY存储引擎成为内部临时表的默认存储引擎
。TempTable存储引擎为VARCHAR和VARBINARY列提供高效存储。internal_tmp_mem_storage_engine会话变量定义了内部
临时表的存储引擎,可选的值有两个,TempTable和MEMORY,其中TempTable为默认的存储引擎。
temptable_max_ram系统配置项定义了TempTable存储引擎可使用的最大内存数量。
15 .日志记录 在MySQL 8中错误日志子系统由一系列MySQL组件构成。这些组件的构成由系统变量
log_error_services来配置,能够实现日志事件的过滤和写入。
WITH cte_name (col_name1,col_name2 …) AS (Subquery)
SELECT * FROM cte_name;
16 .备份锁 新的备份锁允许在线备份期间执行数据操作语句,同时阻止可能造成快照不一致的操作。新备份锁由 LOCK INSTANCE FOR BACKUP 和 UNLOCK INSTANCE 语法提供支持,执行这些操作需要备份管理员特权。
17 .增强的MySQL复制 MySQL 8复制支持对JSON文档进行部分更新的二进制日志记录,该记录使用紧凑的二进制格式
,从而节省记录完整JSON文档的
空间。当使用基于语句的日志记录时,这种紧凑的日志记录会自动完成,并且可以通过将新的binlog_row_value_options系统变量值设置为PARTIAL_JSON来启用。
1. 2 MySQL 8. 0 移除的旧特性
在MySQL 5.7版本上开发的应用程序如果使用了MySQL8.0 移除的特性,语句可能会失败,或者产生不同的执行结果。为了避免这些问题,对于使用了移除特性的应用,应当尽力修正避免使用这些特性,并尽可能使用替代方法。
1. 查询缓存 查询缓存已被移除
,删除的项有: ( 1 )语句: FLUSH QUERY CACHE和RESET QUERY CACHE。 ( 2 )系统变量: query_cache_limit、query_cache_min_res_unit、query_cache_size、query_cache_type、query_cache_wlock_invalidate。 ( 3 )状态变量: Qcache_free_blocks、
Qcache_free_memory、Qcache_hits、Qcache_inserts、Qcache_lowmem_prunes、Qcache_not_cached、
Qcache_queries_in_cache、Qcache_total_blocks。 ( 4 )线程状态: checking privileges on cached
query、checking query cache for query、invalidating query cache entries、sending cached result to client、storing result in query cache、waiting for query cache lock。
2 .加密相关 删除的加密相关的内容有:ENCODE()、DECODE()、ENCRYPT()、DES_ENCRYPT()和
DES_DECRYPT()函数,配置项des-key-file,系统变量have_crypt,FLUSH语句的DES_KEY_FILE选项,
HAVE_CRYPT CMake选项。 对于移除的ENCRYPT()函数,考虑使用SHA2()替代,对于其他移除的函数,使用AES_ENCRYPT()和AES_DECRYPT()替代。
3 .空间函数相关 在MySQL 5.7版本中,多个空间函数已被标记为过时。这些过时函数在MySQL 8中都已被移除,只保留了对应的ST_和MBR函数。
4 .\N和NULL 在SQL语句中,解析器不再将\N视为NULL,所以在SQL语句中应使用NULL代替\N。这项变化不会影响使用LOAD DATA INFILE或者SELECT…INTO OUTFILE操作文件的导入和导出。在这类操作中,NULL仍等同于\N。
5. mysql_install_db 在MySQL分布中,已移除了mysql_install_db程序,数据字典初始化需要调用带着–
initialize或者–initialize-insecure选项的mysqld来代替实现。另外,–bootstrap和INSTALL_SCRIPTDIRCMake也已被删除。
6 .通用分区处理程序 通用分区处理程序已从MySQL服务中被移除。为了实现给定表分区,表所使用的存储引擎需要自有的分区处理程序。 提供本地分区支持的MySQL存储引擎有两个,即InnoDB和NDB,而在MySQL 8中只支持InnoDB。
7 .系统和状态变量信息 在INFORMATION_SCHEMA数据库中,对系统和状态变量信息不再进行维护。
GLOBAL_VARIABLES、SESSION_VARIABLES、GLOBAL_STATUS、SESSION_STATUS表都已被删除。另外系
统变量show_compatibility_56也已被删除。被删除的状态变量有Slave_heartbeat_period、Slave_last_heartbeat,Slave_received_heartbeats、Slave_retried_transactions、Slave_running。以上被删除的内容都可使用性能模式中对应的内容进行替代。
8 .mysql_plugin工具 mysql_plugin工具用来配置MySQL服务器插件,现已被删除,可使用–plugin-load或–plugin-load-add选项在服务器启动时加载插件或者在运行时使用INSTALL PLUGIN语句加载插件来替代该工具。
2. 新特性 1 :窗口函数
2. 1 使用窗口函数前后对比
假设我现在有这样一个数据表,它显示了某购物网站在每个城市每个区的销售额:
CREATE TABLE sales(
id INT PRIMARY KEY AUTO_INCREMENT,
city VARCHAR(15),
county VARCHAR(15),
sales_value DECIMAL
);
INSERT INTO sales(city,county,sales_value)
VALUES
('北京','海淀',10.00),
('北京','朝阳',20.00),
('上海','黄埔',30.00),
('上海','长宁',10.00);
查询:
mysql> SELECT * FROM sales;
+----+------+--------+-------------+
| id | city | county | sales_value |
+----+------+--------+-------------+
| 1 | 北京 | 海淀 | 10 |
| 2 | 北京 | 朝阳 | 20 |
| 3 | 上海 | 黄埔 | 30 |
| 4 | 上海 | 长宁 | 10 |
+----+------+--------+-------------+
4 rows in set (0.00 sec)
需求: 现在计算这个网站在每个城市的销售总额、在全国的销售总额、每个区的销售额占所在城市销售额中的比率,以及占总销售额中的比率。
如果用分组和聚合函数,就需要分好几步来计算。
第一步,计算总销售金额,并存入临时表 a:
CREATE TEMPORARY TABLE a -- 创建临时表
SELECT SUM(sales_value) AS sales_value -- 计算总计金额
FROM sales;
查看一下临时表 a :
mysql> SELECT * FROM a;
+-------------+
| sales_value |
+-------------+
| 70 |
+-------------+
1 row in set (0.00 sec)
第二步,计算每个城市的销售总额并存入临时表 b:
CREATE TEMPORARY TABLE b -- 创建临时表
SELECT city,SUM(sales_value) AS sales_value -- 计算城市销售合计
FROM sales
GROUP BY city;
查看临时表 b :
mysql> SELECT * FROM b;
+------+-------------+
| city | sales_value |
+------+-------------+
| 北京 | 30 |
| 上海 | 40 |
+------+-------------+
2 rows in set (0.00 sec)
第三步,计算各区的销售占所在城市的总计金额的比例,和占全部销售总计金额的比例。我们可以通过下面的连接查询获得需要的结果:
mysql> SELECT s.city AS 城市,s.county AS 区,s.sales_value AS 区销售额,
-> b.sales_value AS 市销售额,s.sales_value/b.sales_value AS 市比率,
-> a.sales_value AS 总销售额,s.sales_value/a.sales_value AS 总比率
-> FROM sales s
-> JOIN b ON (s.city=b.city) -- 连接市统计结果临时表
-> JOIN a -- 连接总计金额临时表
-> ORDER BY s.city,s.county;
+------+------+----------+----------+--------+----------+--------+
| 城市 | 区 | 区销售额 | 市销售额 | 市比率 | 总销售额 | 总比率 |
+------+------+----------+----------+--------+----------+--------+
| 上海 | 长宁 | 10 | 40 | 0.2500 | 70 | 0.1429 |
| 上海 | 黄埔 | 30 | 40 | 0.7500 | 70 | 0.4286 |
| 北京 | 朝阳 | 20 | 30 | 0.6667 | 70 | 0.2857 |
| 北京 | 海淀 | 10 | 30 | 0.3333 | 70 | 0.1429 |
+------+------+----------+----------+--------+----------+--------+
4 rows in set (0.00 sec)
结果显示:市销售金额、市销售占比、总销售金额、总销售占比都计算出来了。同样的查询,如果用窗口函数,就简单多了。我们可以用下面的代码来实现:
mysql> SELECT city AS 城市,county AS 区,sales_value AS 区销售额,
-> SUM(sales_value) OVER(PARTITION BY city) AS 市销售额, -- 计算市销售额
-> sales_value/SUM(sales_value) OVER(PARTITION BY city) AS 市比率,
-> SUM(sales_value) OVER() AS 总销售额, -- 计算总销售额
-> sales_value/SUM(sales_value) OVER() AS 总比率
-> FROM sales
-> ORDER BY city,county;
+------+------+----------+----------+--------+----------+--------+
| 城市 | 区 | 区销售额 | 市销售额 | 市比率 | 总销售额 | 总比率 |
+------+------+----------+----------+--------+----------+--------+
| 上海 | 长宁 | 10 | 40 | 0.2500 | 70 | 0.1429 |
| 上海 | 黄埔 | 30 | 40 | 0.7500 | 70 | 0.4286 |
| 北京 | 朝阳 | 20 | 30 | 0.6667 | 70 | 0.2857 |
| 北京 | 海淀 | 10 | 30 | 0.3333 | 70 | 0.1429 |
+------+------+----------+-----------+--------+----------+--------+
4 rows in set (0.00 sec)
结果显示,我们得到了与上面那种查询同样的结果。
使用窗口函数,只用了一步就完成了查询。而且,由于没有用到临时表,执行的效率也更高了。很显然, 在这种需要用到分组统计的结果对每一条记录进行计算的场景下,使用窗口函数更好 。
2. 2 窗口函数分类
MySQL从 8. 0 版本开始支持窗口函数。窗口函数的作用类似于在查询中对数据进行分组,不同的是,分组操作会把分组的结果聚合成一条记录,而窗口函数是将结果置于每一条数据记录中。
窗口函数可以分为静态窗口函数和动态窗口函数。
-
静态窗口函数的窗口大小是固定的,不会因为记录的不同而不同;
-
动态窗口函数的窗口大小会随着记录的不同而变化。
MySQL官方网站窗口函数的网址为 https://dev.mysql.com/doc/refman/8.0/en/window-function-descriptions.html#function_row-number 。
窗口函数总体上可以分为序号函数、分布函数、前后函数、首尾函数和其他函数,如下表:
2. 3 语法结构
窗口函数的语法结构是:
函数 OVER([PARTITION BY 字段名 ORDER BY 字段名 ASC|DESC])
或者是:
函数 OVER 窗口名 … WINDOW 窗口名 AS ([PARTITION BY 字段名 ORDER BY 字段名 ASC|DESC])
-
OVER 关键字指定函数窗口的范围。
-
如果省略后面括号中的内容,则窗口会包含满足WHERE条件的所有记录,窗口函数会基于所有满足WHERE条件的记录进行计算。
-
如果OVER关键字后面的括号不为空,则可以使用如下语法设置窗口。
-
窗口名:为窗口设置一个别名,用来标识窗口。
-
PARTITION BY子句:指定窗口函数按照哪些字段进行分组。分组后,窗口函数可以在每个分组中分别执行。
-
ORDER BY子句:指定窗口函数按照哪些字段进行排序。执行排序操作使窗口函数按照排序后的数据记录的顺序进行编号。
-
FRAME子句:为分区中的某个子集定义规则,可以用来作为滑动窗口使用。
2. 4 分类讲解
创建表:
CREATE TABLE goods(
id INT PRIMARY KEY AUTO_INCREMENT,
category_id INT,
category VARCHAR(15),
NAME VARCHAR(30),
price DECIMAL(10,2),
stock INT,
upper_time DATETIME
);
添加数据:
INSERT INTO goods(category_id,category,NAME,price,stock,upper_time)
VALUES
(1, '女装/女士精品', 'T恤', 39.90, 1000, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '连衣裙', 79.90, 2500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '卫衣', 89.90, 1500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '牛仔裤', 89.90, 3500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '百褶裙', 29.90, 500, '2020-11-10 00:00:00'),
(1, '女装/女士精品', '呢绒外套', 399.90, 1200, '2020-11-10 00:00:00'),
(2, '户外运动', '自行车', 399.90, 1000, '2020-11-10 00:00:00'),
(2, '户外运动', '山地自行车', 1399.90, 2500, '2020-11-10 00:00:00'),
(2, '户外运动', '登山杖', 59.90, 1500, '2020-11-10 00:00:00'),
(2, '户外运动', '骑行装备', 399.90, 3500, '2020-11-10 00:00:00'),
(2, '户外运动', '运动外套', 799.90, 500, '2020-11-10 00:00:00'),
(2, '户外运动', '滑板', 499.90, 1200, '2020-11-10 00:00:00');
下面针对goods表中的数据来验证每个窗口函数的功能。
1. 序号函数
1 .ROW_NUMBER()函数
ROW_NUMBER()函数能够对数据中的序号进行顺序显示。
举例:查询 goods 数据表中每个商品分类下价格降序排列的各个商品信息。
mysql> SELECT ROW_NUMBER() OVER(PARTITION BY category_id ORDER BY price DESC) AS
row_num,
-> id, category_id, category, NAME, price, stock
-> FROM goods;
+---------+----+-------------+---------------+------------+---------+-------+
| row_num | id | category_id | category | NAME | price | stock |
+---------+----+-------------+---------------+------------+---------+-------+
| 1 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 3 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 4 | 2 | 1 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 |
| 5 | 1 | 1 | 女装/女士精品 | T恤 | 39.90 | 1000 |
| 6 | 5 | 1 | 女装/女士精品 | 百褶裙 | 29.90 | 500 |
| 1 | 8 | 2 | 户外运动 | 山地自行车 | 1399.90 | 2500 |
| 2 | 11 | 2 | 户外运动 | 运动外套 | 799.90 | 500 |
| 3 | 12 | 2 | 户外运动 | 滑板 | 499.90 | 1200 |
| 4 | 7 | 2 | 户外运动 | 自行车 | 399.90 | 1000 |
| 5 | 10 | 2 | 户外运动 | 骑行装备 | 399.90 | 3500 |
| 6 | 9 | 2 | 户外运动 | 登山杖 | 59.90 | 1500 |
+---------+----+-------------+---------------+------------+---------+-------+
12 rows in set (0.00 sec)
举例:查询 goods 数据表中每个商品分类下价格最高的 3 种商品信息。
mysql> SELECT *
-> FROM (
-> SELECT ROW_NUMBER() OVER(PARTITION BY category_id ORDER BY price DESC) AS
row_num,
-> id, category_id, category, NAME, price, stock
-> FROM goods) t
-> WHERE row_num <= 3;
+---------+----+-------------+---------------+------------+---------+-------+
| row_num | id | category_id | category | NAME | price | stock |
+---------+----+-------------+---------------+------------+---------+-------+
| 1 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 3 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 1 | 8 | 2 | 户外运动 | 山地自行车 | 1399.90 | 2500 |
| 2 | 11 | 2 | 户外运动 | 运动外套 | 799.90 | 500 |
| 3 | 12 | 2 | 户外运动 | 滑板 | 499.90 | 1200 |
+---------+----+-------------+---------------+------------+----------+-------+
6 rows in set (0.00 sec)
在名称为“女装/女士精品”的商品类别中,有两款商品的价格为 89. 90 元,分别是卫衣和牛仔裤。两款商品的序号都应该为 2 ,而不是一个为 2 ,另一个为 3 。此时,可以使用RANK()函数和DENSE_RANK()函数解决。
2 .RANK()函数
使用RANK()函数能够对序号进行并列排序,并且会跳过重复的序号,比如序号为 1 、 1 、 3 。
举例:使用RANK()函数获取 goods 数据表中各类别的价格从高到低排序的各商品信息。
mysql> SELECT RANK() OVER(PARTITION BY category_id ORDER BY price DESC) AS row_num,
-> id, category_id, category, NAME, price, stock
-> FROM goods;
+---------+----+-------------+---------------+------------+---------+-------+
| row_num | id | category_id | category | NAME | price | stock |
+---------+----+-------------+---------------+------------+---------+-------+
| 1 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 2 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 4 | 2 | 1 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 |
| 5 | 1 | 1 | 女装/女士精品 | T恤 | 39.90 | 1000 |
| 6 | 5 | 1 | 女装/女士精品 | 百褶裙 | 29.90 | 500 |
| 1 | 8 | 2 | 户外运动 | 山地自行车 | 1399.90 | 2500 |
| 2 | 11 | 2 | 户外运动 | 运动外套 | 799.90 | 500 |
| 3 | 12 | 2 | 户外运动 | 滑板 | 499.90 | 1200 |
| 4 | 7 | 2 | 户外运动 | 自行车 | 399.90 | 1000 |
| 4 | 10 | 2 | 户外运动 | 骑行装备 | 399.90 | 3500 |
| 6 | 9 | 2 | 户外运动 | 登山杖 | 59.90 | 1500 |
+---------+----+-------------+---------------+------------+---------+-------+
12 rows in set (0.00 sec)
举例:使用RANK()函数获取 goods 数据表中类别为“女装/女士精品”的价格最高的 4 款商品信息。
mysql> SELECT *
-> FROM(
-> SELECT RANK() OVER(PARTITION BY category_id ORDER BY price DESC) AS row_num,
-> id, category_id, category, NAME, price, stock
-> FROM goods) t
-> WHERE category_id = 1 AND row_num <= 4;
+---------+----+-------------+---------------+----------+--------+-------+
| row_num | id | category_id | category | NAME | price | stock |
+---------+----+-------------+---------------+----------+--------+-------+
| 1 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 2 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 4 | 2 | 1 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 |
+---------+----+-------------+---------------+----------+--------+-------+
4 rows in set (0.00 sec)
可以看到,使用RANK()函数得出的序号为 1 、 2 、 2 、 4 ,相同价格的商品序号相同,后面的商品序号是不连续的,跳过了重复的序号。
3 .DENSE_RANK()函数
DENSE_RANK()函数对序号进行并列排序,并且不会跳过重复的序号,比如序号为 1 、 1 、 2 。
举例:使用DENSE_RANK()函数获取 goods 数据表中各类别的价格从高到低排序的各商品信息。
mysql> SELECT DENSE_RANK() OVER(PARTITION BY category_id ORDER BY price DESC) AS
row_num,
-> id, category_id, category, NAME, price, stock
-> FROM goods;
+---------+----+-------------+---------------+------------+---------+-------+
| row_num | id | category_id | category | NAME | price | stock |
+---------+----+-------------+---------------+------------+---------+-------+
| 1 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 2 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 3 | 2 | 1 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 |
| 4 | 1 | 1 | 女装/女士精品 | T恤 | 39.90 | 1000 |
| 5 | 5 | 1 | 女装/女士精品 | 百褶裙 | 29.90 | 500 |
| 1 | 8 | 2 | 户外运动 | 山地自行车 | 1399.90 | 2500 |
| 2 | 11 | 2 | 户外运动 | 运动外套 | 799.90 | 500 |
| 3 | 12 | 2 | 户外运动 | 滑板 | 499.90 | 1200 |
| 4 | 7 | 2 | 户外运动 | 自行车 | 399.90 | 1000 |
| 4 | 10 | 2 | 户外运动 | 骑行装备 | 399.90 | 3500 |
| 5 | 9 | 2 | 户外运动 | 登山杖 | 59.90 | 1500 |
+---------+----+-------------+---------------+------------+---------+-------+
12 rows in set (0.00 sec)
举例:使用DENSE_RANK()函数获取 goods 数据表中类别为“女装/女士精品”的价格最高的 4 款商品信息。
mysql> SELECT *
-> FROM(
-> SELECT DENSE_RANK() OVER(PARTITION BY category_id ORDER BY price DESC) AS
row_num,
-> id, category_id, category, NAME, price, stock
-> FROM goods) t
-> WHERE category_id = 1 AND row_num <= 3;
+---------+----+-------------+---------------+----------+--------+-------+
| row_num | id | category_id | category | NAME | price | stock |
+---------+----+-------------+---------------+----------+--------+-------+
| 1 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 2 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 3 | 2 | 1 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 |
+---------+----+-------------+---------------+----------+--------+-------+
4 rows in set (0.00 sec)
可以看到,使用DENSE_RANK()函数得出的行号为 1 、 2 、 2 、 3 ,相同价格的商品序号相同,后面的商品序号是连续的,并且没有跳过重复的序号。
2. 分布函数
1 .PERCENT_RANK()函数
PERCENT_RANK()函数是等级值百分比函数。按照如下方式进行计算。
(rank - 1) / (rows - 1)
其中,rank的值为使用RANK()函数产生的序号,rows的值为当前窗口的总记录数。
举例:计算 goods 数据表中名称为“女装/女士精品”的类别下的商品的PERCENT_RANK值。
#写法一:
SELECT RANK() OVER (PARTITION BY category_id ORDER BY price DESC) AS r,
PERCENT_RANK() OVER (PARTITION BY category_id ORDER BY price DESC) AS pr,
id, category_id, category, NAME, price, stock
FROM goods
WHERE category_id = 1;
#写法二:
mysql> SELECT RANK() OVER w AS r,
-> PERCENT_RANK() OVER w AS pr,
-> id, category_id, category, NAME, price, stock
-> FROM goods
-> WHERE category_id = 1 WINDOW w AS (PARTITION BY category_id ORDER BY price
DESC);
+---+-----+----+-------------+---------------+----------+--------+-------+
| r | pr | id | category_id | category | NAME | price | stock |
+---+-----+----+-------------+---------------+----------+--------+-------+
| 1 | 0 | 6 | 1 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 |
| 2 | 0.2 | 3 | 1 | 女装/女士精品 | 卫衣 | 89.90 | 1500 |
| 2 | 0.2 | 4 | 1 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 |
| 4 | 0.6 | 2 | 1 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 |
| 5 | 0.8 | 1 | 1 | 女装/女士精品 | T恤 | 39.90 | 1000 |
| 6 | 1 | 5 | 1 | 女装/女士精品 | 百褶裙 | 29.90 | 500 |
+---+-----+----+-------------+---------------+----------+--------+-------+
6 rows in set (0.00 sec)
2 .CUME_DIST()函数
CUME_DIST()函数主要用于查询小于或等于某个值的比例。
举例:查询goods数据表中小于或等于当前价格的比例。
mysql> SELECT CUME_DIST() OVER(PARTITION BY category_id ORDER BY price ASC) AS cd,
-> id, category, NAME, price
-> FROM goods;
+---------------------+----+---------------+------------+---------+
| cd | id | category | NAME | price |
+---------------------+----+---------------+------------+---------+
| 0.16666666666666666 | 5 | 女装/女士精品 | 百褶裙 | 29.90 |
| 0.3333333333333333 | 1 | 女装/女士精品 | T恤 | 39.90 |
| 0.5 | 2 | 女装/女士精品 | 连衣裙 | 79.90 |
| 0.8333333333333334 | 3 | 女装/女士精品 | 卫衣 | 89.90 |
| 0.8333333333333334 | 4 | 女装/女士精品 | 牛仔裤 | 89.90 |
| 1 | 6 | 女装/女士精品 | 呢绒外套 | 399.90 |
| 0.16666666666666666 | 9 | 户外运动 | 登山杖 | 59.90 |
| 0.5 | 7 | 户外运动 | 自行车 | 399.90 |
| 0.5 | 10 | 户外运动 | 骑行装备 | 399.90 |
| 0.6666666666666666 | 12 | 户外运动 | 滑板 | 499.90 |
| 0.8333333333333334 | 11 | 户外运动 | 运动外套 | 799.90 |
| 1 | 8 | 户外运动 | 山地自行车 | 1399.90 |
+---------------------+----+---------------+------------+---------+
12 rows in set (0.00 sec)
3. 前后函数
1 .LAG(expr,n)函数
LAG(expr,n)函数返回当前行的前n行的expr的值。
举例:查询goods数据表中前一个商品价格与当前商品价格的差值。
mysql> SELECT id, category, NAME, price, pre_price, price - pre_price AS diff_price
-> FROM (
-> SELECT id, category, NAME, price,LAG(price,1) OVER w AS pre_price
-> FROM goods
-> WINDOW w AS (PARTITION BY category_id ORDER BY price)) t;
+----+---------------+------------+---------+-----------+------------+
| id | category | NAME | price | pre_price | diff_price |
+----+---------------+------------+---------+-----------+------------+
| 5 | 女装/女士精品 | 百褶裙 | 29.90 | NULL | NULL |
| 1 | 女装/女士精品 | T恤 | 39.90 | 29.90 | 10.00 |
| 2 | 女装/女士精品 | 连衣裙 | 79.90 | 39.90 | 40.00 |
| 3 | 女装/女士精品 | 卫衣 | 89.90 | 79.90 | 10.00 |
| 4 | 女装/女士精品 | 牛仔裤 | 89.90 | 89.90 | 0.00 |
| 6 | 女装/女士精品 | 呢绒外套 | 399.90 | 89.90 | 310.00 |
| 9 | 户外运动 | 登山杖 | 59.90 | NULL | NULL |
| 7 | 户外运动 | 自行车 | 399.90 | 59.90 | 340.00 |
| 10 | 户外运动 | 骑行装备 | 399.90 | 399.90 | 0.00 |
| 12 | 户外运动 | 滑板 | 499.90 | 399.90 | 100.00 |
| 11 | 户外运动 | 运动外套 | 799.90 | 499.90 | 300.00 |
| 8 | 户外运动 | 山地自行车 | 1399.90 | 799.90 | 600.00 |
+----+---------------+------------+---------+-----------+------------+
12 rows in set (0.00 sec)
2 .LEAD(expr,n)函数
LEAD(expr,n)函数返回当前行的后n行的expr的值。
举例:查询goods数据表中后一个商品价格与当前商品价格的差值。
mysql> SELECT id, category, NAME, behind_price, price,behind_price - price AS
diff_price
-> FROM(
-> SELECT id, category, NAME, price,LEAD(price, 1) OVER w AS behind_price
-> FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price)) t;
+----+---------------+------------+--------------+---------+------------+
| id | category | NAME | behind_price | price | diff_price |
+----+---------------+------------+--------------+---------+------------+
| 5 | 女装/女士精品 | 百褶裙 | 39.90 | 29.90 | 10.00 |
| 1 | 女装/女士精品 | T恤 | 79.90 | 39.90 | 40.00 |
| 2 | 女装/女士精品 | 连衣裙 | 89.90 | 79.90 | 10.00 |
| 3 | 女装/女士精品 | 卫衣 | 89.90 | 89.90 | 0.00 |
| 4 | 女装/女士精品 | 牛仔裤 | 399.90 | 89.90 | 310.00 |
| 6 | 女装/女士精品 | 呢绒外套 | NULL | 399.90 | NULL |
| 9 | 户外运动 | 登山杖 | 399.90 | 59.90 | 340.00 |
| 7 | 户外运动 | 自行车 | 399.90 | 399.90 | 0.00 |
| 10 | 户外运动 | 骑行装备 | 499.90 | 399.90 | 100.00 |
| 12 | 户外运动 | 滑板 | 799.90 | 499.90 | 300.00 |
| 11 | 户外运动 | 运动外套 | 1399.90 | 799.90 | 600.00 |
| 8 | 户外运动 | 山地自行车 | NULL | 1399.90 | NULL |
+----+---------------+------------+--------------+---------+------------+
12 rows in set (0.00 sec)
4. 首尾函数
1 .FIRST_VALUE(expr)函数
FIRST_VALUE(expr)函数返回第一个expr的值。
举例:按照价格排序,查询第 1 个商品的价格信息。
mysql> SELECT id, category, NAME, price, stock,FIRST_VALUE(price) OVER w AS
first_price
-> FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price);
+----+---------------+------------+---------+-------+-------------+
| id | category | NAME | price | stock | first_price |
+----+---------------+------------+---------+-------+-------------+
| 5 | 女装/女士精品 | 百褶裙 | 29.90 | 500 | 29.90 |
| 1 | 女装/女士精品 | T恤 | 39.90 | 1000 | 29.90 |
| 2 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 | 29.90 |
| 3 | 女装/女士精品 | 卫衣 | 89.90 | 1500 | 29.90 |
| 4 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 | 29.90 |
| 6 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 | 29.90 |
| 9 | 户外运动 | 登山杖 | 59.90 | 1500 | 59.90 |
| 7 | 户外运动 | 自行车 | 399.90 | 1000 | 59.90 |
| 10 | 户外运动 | 骑行装备 | 399.90 | 3500 | 59.90 |
| 12 | 户外运动 | 滑板 | 499.90 | 1200 | 59.90 |
| 11 | 户外运动 | 运动外套 | 799.90 | 500 | 59.90 |
| 8 | 户外运动 | 山地自行车 | 1399.90 | 2500 | 59.90 |
+----+---------------+------------+---------+-------+-------------+
12 rows in set (0.00 sec)
2 .LAST_VALUE(expr)函数
LAST_VALUE(expr)函数返回最后一个expr的值。
举例:按照价格排序,查询最后一个商品的价格信息。
mysql> SELECT id, category, NAME, price, stock,LAST_VALUE(price) OVER w AS last_price
-> FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price);
+----+---------------+------------+---------+-------+------------+
| id | category | NAME | price | stock | last_price |
+----+---------------+------------+---------+-------+------------+
| 5 | 女装/女士精品 | 百褶裙 | 29.90 | 500 | 29.90 |
| 1 | 女装/女士精品 | T恤 | 39.90 | 1000 | 39.90 |
| 2 | 女装/女士精品 | 连衣裙 | 79.90 | 2500 | 79.90 |
| 3 | 女装/女士精品 | 卫衣 | 89.90 | 1500 | 89.90 |
| 4 | 女装/女士精品 | 牛仔裤 | 89.90 | 3500 | 89.90 |
| 6 | 女装/女士精品 | 呢绒外套 | 399.90 | 1200 | 399.90 |
| 9 | 户外运动 | 登山杖 | 59.90 | 1500 | 59.90 |
| 7 | 户外运动 | 自行车 | 399.90 | 1000 | 399.90 |
| 10 | 户外运动 | 骑行装备 | 399.90 | 3500 | 399.90 |
| 12 | 户外运动 | 滑板 | 499.90 | 1200 | 499.90 |
| 11 | 户外运动 | 运动外套 | 799.90 | 500 | 799.90 |
| 8 | 户外运动 | 山地自行车 | 1399.90 | 2500 | 1399.90 |
+----+---------------+------------+---------+-------+------------+
12 rows in set (0.00 sec)
6. 其他函数
1 .NTH_VALUE(expr,n)函数
NTH_VALUE(expr,n)函数返回第n个expr的值。
举例:查询goods数据表中排名第 2 和第 3 的价格信息。
mysql> SELECT id, category, NAME, price,NTH_VALUE(price,2) OVER w AS second_price,
-> NTH_VALUE(price,3) OVER w AS third_price
-> FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price);
+----+---------------+------------+---------+--------------+-------------+
| id | category | NAME | price | second_price | third_price |
+----+---------------+------------+---------+--------------+-------------+
| 5 | 女装/女士精品 | 百褶裙 | 29.90 | NULL | NULL |
| 1 | 女装/女士精品 | T恤 | 39.90 | 39.90 | NULL |
| 2 | 女装/女士精品 | 连衣裙 | 79.90 | 39.90 | 79.90 |
| 3 | 女装/女士精品 | 卫衣 | 89.90 | 39.90 | 79.90 |
| 4 | 女装/女士精品 | 牛仔裤 | 89.90 | 39.90 | 79.90 |
| 6 | 女装/女士精品 | 呢绒外套 | 399.90 | 39.90 | 79.90 |
| 9 | 户外运动 | 登山杖 | 59.90 | NULL | NULL |
| 7 | 户外运动 | 自行车 | 399.90 | 399.90 | 399.90 |
| 10 | 户外运动 | 骑行装备 | 399.90 | 399.90 | 399.90 |
| 12 | 户外运动 | 滑板 | 499.90 | 399.90 | 399.90 |
| 11 | 户外运动 | 运动外套 | 799.90 | 399.90 | 399.90 |
| 8 | 户外运动 | 山地自行车 | 1399.90 | 399.90 | 399.90 |
+----+---------------+------------+---------+--------------+-------------+
12 rows in set (0.00 sec)
2 .NTILE(n)函数
NTILE(n)函数将分区中的有序数据分为n个桶,记录桶编号。
举例:将goods表中的商品按照价格分为 3 组。
mysql> SELECT NTILE(3) OVER w AS nt,id, category, NAME, price
-> FROM goods WINDOW w AS (PARTITION BY category_id ORDER BY price);
+----+----+---------------+------------+---------+
| nt | id | category | NAME | price |
+----+----+---------------+------------+---------+
| 1 | 5 | 女装/女士精品 | 百褶裙 | 29.90 |
| 1 | 1 | 女装/女士精品 | T恤 | 39.90 |
| 2 | 2 | 女装/女士精品 | 连衣裙 | 79.90 |
| 2 | 3 | 女装/女士精品 | 卫衣 | 89.90 |
| 3 | 4 | 女装/女士精品 | 牛仔裤 | 89.90 |
| 3 | 6 | 女装/女士精品 | 呢绒外套 | 399.90 |
| 1 | 9 | 户外运动 | 登山杖 | 59.90 |
| 1 | 7 | 户外运动 | 自行车 | 399.90 |
| 2 | 10 | 户外运动 | 骑行装备 | 399.90 |
| 2 | 12 | 户外运动 | 滑板 | 499.90 |
| 3 | 11 | 户外运动 | 运动外套 | 799.90 |
| 3 | 8 | 户外运动 | 山地自行车 | 1399.90 |
+----+----+---------------+------------+---------+
12 rows in set (0.00 sec)
2. 5 小 结
窗口函数的特点是可以分组,而且可以在分组内排序。另外,窗口函数不会因为分组而减少原表中的行数,这对我们在原表数据的基础上进行统计和排序非常有用。
3. 新特性 2 :公用表表达式
公用表表达式(或通用表表达式)简称为CTE(Common Table Expressions)。CTE是一个命名的临时结果集,作用范围是当前语句。CTE可以理解成一个可以复用的子查询,当然跟子查询还是有点区别的,CTE可以引用其他CTE,但子查询不能引用其他子查询。所以,可以考虑代替子查询。
依据语法结构和执行方式的不同,公用表表达式分为普通公用表表达式和递归公用表表达式
2 种。
3. 1 普通公用表表达式
普通公用表表达式的语法结构是:
WITH CTE名称
AS (子查询)
SELECT|DELETE|UPDATE 语句;
普通公用表表达式类似于子查询,不过,跟子查询不同的是,它可以被多次引用,而且可以被其他的普通公用表表达式所引用。
举例:查询员工所在的部门的详细信息。
mysql> SELECT * FROM departments
-> WHERE department_id IN (
-> SELECT DISTINCT department_id
-> FROM employees
-> );
+---------------+------------------+------------+-------------+
| department_id | department_name | manager_id | location_id |
+---------------+------------------+------------+-------------+
| 10 | Administration | 200 | 1700 |
| 20 | Marketing | 201 | 1800 |
| 30 | Purchasing | 114 | 1700 |
| 40 | Human Resources | 203 | 2400 |
| 50 | Shipping | 121 | 1500 |
| 60 | IT | 103 | 1400 |
| 70 | Public Relations | 204 | 2700 |
| 80 | Sales | 145 | 2500 |
| 90 | Executive | 100 | 1700 |
| 100 | Finance | 108 | 1700 |
| 110 | Accounting | 205 | 1700 |
+---------------+------------------+------------+-------------+
11 rows in set (0.00 sec)
这个查询也可以用普通公用表表达式的方式完成:
mysql> WITH emp_dept_id
-> AS (SELECT DISTINCT department_id FROM employees)
-> SELECT *
-> FROM departments d JOIN emp_dept_id e
-> ON d.department_id = e.department_id;
+---------------+------------------+------------+-------------+---------------+
| department_id | department_name | manager_id | location_id | department_id |
+---------------+------------------+------------+-------------+---------------+
| 90 | Executive | 100 | 1700 | 90 |
| 60 | IT | 103 | 1400 | 60 |
| 100 | Finance | 108 | 1700 | 100 |
| 30 | Purchasing | 114 | 1700 | 30 |
| 50 | Shipping | 121 | 1500 | 50 |
| 80 | Sales | 145 | 2500 | 80 |
| 10 | Administration | 200 | 1700 | 10 |
| 20 | Marketing | 201 | 1800 | 20 |
| 40 | Human Resources | 203 | 2400 | 40 |
| 70 | Public Relations | 204 | 2700 | 70 |
| 110 | Accounting | 205 | 1700 | 110 |
+---------------+------------------+------------+-------------+---------------+
11 rows in set (0.00 sec)
例子说明,公用表表达式可以起到子查询的作用。以后如果遇到需要使用子查询的场景,你可以在查询之前,先定义公用表表达式,然后在查询中用它来代替子查询。而且,跟子查询相比,公用表表达式有一个优点,就是定义过公用表表达式之后的查询,可以像一个表一样多次引用公用表表达式,而子查询则不能。
3. 2 递归公用表表达式
递归公用表表达式也是一种公用表表达式,只不过,除了普通公用表表达式的特点以外,它还有自己的特点,就是 可以调用自己 。它的语法结构是:
WITH RECURSIVE
CTE名称 AS (子查询)
SELECT|DELETE|UPDATE 语句;
递归公用表表达式由 2 部分组成,分别是种子查询和递归查询,中间通过关键字 UNION [ALL]进行连接。这里的 种子查询,意思就是获得递归的初始值
。这个查询只会运行一次,以创建初始数据集,之后递归查询会一直执行,直到没有任何新的查询数据产生,递归返回。
案例: 针对于我们常用的employees表,包含employee_id,last_name和manager_id三个字段。如果a是b的管理者,那么,我们可以把b叫做a的下属,如果同时b又是c的管理者,那么c就是b的下属,是a的下下属。
下面我们尝试用查询语句列出所有具有下下属身份的人员信息。
如果用我们之前学过的知识来解决,会比较复杂,至少要进行 4 次查询才能搞定:
- 第一步,先找出初代管理者,就是不以任何别人为管理者的人,把结果存入临时表;
- 第二步,找出所有以初代管理者为管理者的人,得到一个下属集,把结果存入临时表;
- 第三步,找出所有以下属为管理者的人,得到一个下下属集,把结果存入临时表。
- 第四步,找出所有以下下属为管理者的人,得到一个结果集。
如果第四步的结果集为空,则计算结束,第三步的结果集就是我们需要的下下属集了,否则就必须继续进行第四步,一直到结果集为空为止。比如上面的这个数据表,就需要到第五步,才能得到空结果集。
而且,最后还要进行第六步:把第三步和第四步的结果集合并,这样才能最终获得我们需要的结果集。
如果用递归公用表表达式,就非常简单了。我介绍下具体的思路。
-
用递归公用表表达式中的种子查询,找出初代管理者。字段 n 表示代次,初始值为 1 ,表示是第一代管理者。
-
用递归公用表表达式中的递归查询,查出以这个递归公用表表达式中的人为管理者的人,并且代次的值加 1 。直到没有人以这个递归公用表表达式中的人为管理者了,递归返回。
-
在最后的查询中,选出所有代次大于等于 3 的人,他们肯定是第三代及以上代次的下属了,也就是下下属了。这样就得到了我们需要的结果集。
这里看似也是 3 步,实际上是一个查询的 3 个部分,只需要执行一次就可以了。而且也不需要用临时表保存中间结果,比刚刚的方法简单多了。
代码实现:
WITH RECURSIVE cte
AS
(
SELECT employee_id,last_name,manager_id,1 AS n FROM employees WHERE employee_id = 100
-- 种子查询,找到第一代领导
UNION ALL
SELECT a.employee_id,a.last_name,a.manager_id,n+1 FROM employees AS a JOIN cte
ON (a.manager_id = cte.employee_id) -- 递归查询,找出以递归公用表表达式的人为领导的人
)
SELECT employee_id,last_name FROM cte WHERE n >= 3;
总之,递归公用表表达式对于查询一个有共同的根节点的树形结构数据,非常有用。它可以不受层级的限制,轻松查出所有节点的数据。如果用其他的查询方式,就比较复杂了。
3. 3 小 结
公用表表达式的作用是可以替代子查询,而且可以被多次引用。递归公用表表达式对查询有一个共同根节点的树形结构数据非常高效,可以轻松搞定其他查询方式难以处理的查询。
相关文章:
MySQl学习(从入门到精通15)
MySQl学习(从入门到精通15)第 18 章_MySQL 8 其它新特性1. MySQL 8 新特性概述1. 1 MySQL 8. 0 新增特性1. 2 MySQL 8. 0 移除的旧特性2. 新特性 1 :窗口函数2. 1 使用窗口函数前后对比2. 2 窗口函数分类2. 3 语法结构2. 4 分类讲解1. 序号函…...
前端构建工具 Vite
文章目录参考环境构建工具构建工具的主要功能目前主流的前端构建工具Vite为什么使用 Vite冷启动WebpackVite热更新优化热更新优化预构建依赖Webpack VS ViteVite 的缺点首屏性能懒加载与 Vite 相关的基本操作获取create-vite创建项目Project nameSelect a frameworkSelect a va…...
若依框架---PageHelper分页(十)
在前几天的文章中,我们介绍了PageHelper的分页方法,研读代码定位到了ExecutorUtil.pageQuery(...)方法,并阅读到了其中的部分代码。 今天我们将看到重要的SQL修改代码。 getPageSql 我们接着看代码: if (!dialect.beforePage(…...
苹果手机专用蓝牙耳机有哪些?与iphone兼容性好的蓝牙耳机
蓝牙耳机摆脱了线缆的束缚,在地以各种方式轻松通话。自从蓝牙耳机问世以来,一直是行动商务族提升效率的好工具,苹果产品一直都是受欢迎的数码产品,下面推荐几款与iphone兼容性好的蓝牙耳机。 第一款:南卡小音舱蓝牙耳…...
CS-TPGS;壳聚糖修饰维生素E;Chitosan-g-TPGS
Chitosan-g-TPGS,CS-TPGS壳聚糖修饰维生素E聚乙二醇1000琥珀酸酯外观呈现白色固体或者粘稠液体。长期保存需要在-20℃,避光,干燥条件下存放,注意取用一定要干燥,避免频繁溶冻。 维生素E聚乙二醇琥珀酸酯(简称TPGS)是维生素E的水溶性衍生物,由维生素E琥珀酸酯的羧基与…...
easyx的基本使用(万字解析)
easyx的基本使用一.基本框架1.创建文件2.创建窗体-initgraph,closegraph,getchar二.简单的绘制1.圆形-circle2.坐标系统-setorigin,setaspectratio三.简单图形1.绘制点-putpixel2.简单的直线-line3.矩形-rectangle4.椭圆-ellipse5.圆角矩形-roundrect6.扇形-pie7.圆弧-arc四.多…...
基于OpenCV 的车牌识别
基于OpenCV 的车牌识别 车牌识别是一种图像处理技术,用于识别不同车辆。这项技术被广泛用于各种安全检测中。现在让我一起基于 OpenCV 编写 Python 代码来完成这一任务。 车牌识别的相关步骤 1. 车牌检测:第一步是从汽车上检测车牌所在位置。我们将使用…...
C#【必备技能篇】Winform跨线程更新进度条的实例
文章目录实例一:【方便理解,常用!】源码:运行效果:实例二:【重在理解代码本身】源码:运行效果:参考:实例一:【方便理解,常用!】 跨线…...
(1分钟速通面试) 矩阵分解相关内容
矩阵分解算法--总结QR分解 LU分解本篇博客总结一下QR分解和LU分解,这些都是矩阵加速的操作,在slam里面还算是比较常用的内容,这个地方在isam的部分出现过。(当然isam也是一个坑,想要出点创新成果的话 可能是不太现实的 短期来讲 哈…...
this指向
(1)在全局环境中的this——window 无论是否在严格模式下,在全局执行环境中(在任何函数体外部)this 都指向全局对象。 "use strict"console.log(this); //windowconsole.log(thiswindow);//true (…...
安卓小游戏:小板弹球
安卓小游戏:小板弹球 前言 这个是通过自定义View实现小游戏的第三篇,是小时候玩的那种五块钱的游戏机上的,和俄罗斯方块很像,小时候觉得很有意思,就模仿了一下。 需求 这里的逻辑就是板能把球弹起来,球…...
7、单行函数
文章目录1 函数的理解1.1 什么是函数1.2 不同DBMS函数的差异1.3 MySQL的内置函数及分类2 数值函数2.1 基本函数2.2 角度与弧度互换函数2.3 三角函数2.4 指数与对数2.5 进制间的转换3 字符串函数4 日期和时间函数4.1 获取日期、时间4.2 日期与时间戳的转换4.3 获取月份、星期、星…...
华为机试题:HJ56 完全数计算(python)
文章目录博主精品专栏导航知识点详解1、input():获取控制台(任意形式)的输入。输出均为字符串类型。1.1、input() 与 list(input()) 的区别、及其相互转换方法2、print() :打印输出。3、整型int() :将指定进制…...
opencv——傅里叶变换、低通与高通滤波及直方图等操作
1、傅里叶变换a、傅里叶变换原理时域分析:以时间为参照进行分析。频域分析:相当于上帝视角一样,看事物层次更高,时域的运动在频域来看就是静止的。eg:投球——时域分析:第1分钟投了3分,第2分钟投…...
【NGINX入门指北】 进阶篇
nginx 进阶篇 文章目录nginx 进阶篇一、Nginx Proxy 服务器1、代理原理2、proxy代理3、proxy缓存一、Nginx Proxy 服务器 1、代理原理 正向代理 内网客户机通过代理访问互联网,通常要设置代理服务器地址和端口。 反向代理 外网用户通过代理访问内网服务器&…...
Python中关于@修饰符、yeild关键词、next()函数的基本功能简述
关于修饰符:其实就是将修饰符下面的函数当成参数传给它上面的函数。 def a(x):print(a)adef b():print(b) 其效果等价为: def a(x):print(a)def b():print(b)a(b())有个记忆诀窍,的下面哪个函数最近,谁就是儿子,谁就…...
结合Coverity扫描Spring Boot项目进行Path Manipulation漏洞修复
本篇介绍使用Coverity 扫描基于Spring Boot 项目中的Path Manipulation 漏洞, 进而解决风险,并且可以通过扫描。 什么样的代码会被扫描有路径操纵风险? 在Spring Boot 项目中, 实验了如下的场景: 1. Control 中 file path 作为参数传递的会被扫描,单纯服务方法不会 场…...
【FFMPEG源码分析】从ffplay源码摸清ffmpeg框架(一)
ffplay入口 ffmpeg\fftools\ffplay.c int main(int argc, char **argv) {/*******************start 动态库加载/网络初始化等**************/int flags;VideoState *is;init_dynload();av_log_set_flags(AV_LOG_SKIP_REPEATED);parse_loglevel(argc, argv, options);/* regis…...
C++蓝桥杯 基础练习,高精度加法,输入两个整数a和b,输出这两个整数的和。a和b都不超过100位。
C蓝桥杯 基础练习,高精度加法 问题描述 输入两个整数a和b,输出这两个整数的和。a和b都不超过100位。 算法描述 由于a和b都比较大,所以不能直接使用语言中的标准数据类型来存储。对于这种问题,一般使用数组来处理。 定义一…...
MySQL面试题:SQL语句的基本语法
MySQL目录一、数据库入门1. 数据管理技术的三个阶段2. 关系型数据库与非关系型数据库3. 四大非关系型数据库a. 基于列的数据库(column-oriented)b. 键值对存储(Key-Value Stores)c. 文档存储(Document Storesÿ…...
Fluid-数据编排能力原理解析
前言本文对Fluid基础功能-数据编排能力进行原理解析。其中涉及到Fluid架构和k8s csi driver相关知识。建议先了解相关概念,为了便于理解,本文使用JuiceFS作为后端runtime引擎。原理概述Fuild数据编排能力,主要是在云原生环境中,能…...
并发线程、锁、ThreadLocal
并发编程并发编程Java内存模型(JMM)并发编程核心问题—可见性、原子性、有序性volatile关键字原子性原子类CAS(Compare-And-Swap 比较并交换)ABA问题Java中的锁乐观锁和悲观锁可重入锁读写锁分段锁自旋锁共享锁/独占锁公平锁/非公平锁偏向锁/轻量级锁/重…...
CMMI-结项管理
结项管理(ProjectClosing Management, PCM)是指在项目开发工作结束后,对项目的有形资产和无形资产进行清算;对项目进行综合评估;总结经验教训等。结项管理过程域是SPP模型的重要组成部分。本规范阐述了结项管理的规程&…...
网络通信协议是什么?
网络通信基本模式 常见的通信模式有如下2种形式:Client-Server(CS) 、 Browser/Server(BS) 实现网络编程关键的三要素 IP地址:设备在网络中的地址,是唯一的标识。 端口:应用程序在设备中唯一的标识。 协议: 数据在网络中传输的…...
阶段5:Java分布式与微服务实战
目录 第33-34周 Spring Cloud电商实战 一、Eureka-server模块开发 1、引入依赖 2、配置文件 3、启动注解 一、Eureka-server模块开发 第33-34周 Spring Cloud电商实战 一、Eureka-server模块开发 1、引入依赖 父项目依赖:cloud-mall-practice springboot的…...
我的创作纪念日
目录 机缘 收获 日常 憧憬 机缘 其实本来从大一上学期后半段(2017)就开始谢谢零星的博客,只不过当时是自己用hexo搭建了一个小网站,还整了个域名:jiayoudangdang.top,虽然这个早就过期; 后来发现了CSDNÿ…...
Qml学习——动态加载控件
最近在学习Qml,但对Qml的各种用法都不太熟悉,总是会搞忘,所以写几篇文章对学习过程中的遇到的东西做一个记录。 学习参考视频:https://www.bilibili.com/video/BV1Ay4y1W7xd?p1&vd_source0b527ff208c63f0b1150450fd7023fd8 目…...
设计模式之职责链模式
什么是职责链模式 职责链模式是避免请求发送者与接受者耦合在一起,让多个对象都可以接受到请求,从而将这些对象连接成一条链,并且沿着这条链传递请求,直到有对象处理为止。 职责链模式包含以下几个角色: …...
MySQL入门篇-MySQL 8.0 延迟复制
备注:测试数据库版本为MySQL 8.0 这个blog我们来聊聊MySQL 延迟复制 概述 MySQL的复制一般都很快,虽然有时候因为 网络原因、大事务等原因造成延迟,但是这个无法人为控制。 生产中可能会存在主库误操作,导致数据被删除了,Oracl…...
FPGA时序约束与分析 --- 实例教程(1)
注意: 时序约束辅助工具或者相关的TCL命令,都必须在 open synthesis design / open implemention design 后才能有效运行。 1、时序约束辅助工具 2、查看相关时序信息 3、一般的时序约束顺序 1、 时序约束辅助工具(1)时序约束编辑…...
网站建设以及运营方面/乐事薯片软文推广
是不是觉得target有点眼熟?! 今天要讲的不是HTML的<a>标签里面有个target属性。 target伪类是css3的新属性。 说到伪类,对css属性的人肯定都知道:hover、:link、:visited、:focus等等,target用法跟他们是同出一辙的。 官方定义是: URL…...
帮助中心网站源码/直通车推广计划方案
Python内置了整数、复数、浮点数三种数字类型。整数 整数是没有小数部分的数值,与数学上的一样: >>> 1 1 >>> -1 -1 整数没有大小限制,只要你的内存足够大,就可以创建任意大小的整数: >>> …...
网站做的优化 怎么排名靠后了/nba排名2021最新排名
Pig...
哈尔滨网站开发需要多少钱/最近的国际新闻热点
前言 本文是在笔者做深度学习相关研究的时候需要高算力GPU去运行代码因而选择去租借GPU云服务器,这里记下自己所接触的一些GPU服务器网站和使用技巧 一、推荐站点 1、极链AI云,首当其冲的一定是这家,这家是我用过认为较为好用而且相对价格…...
石家庄做网站的/seo咨询邵阳
对于从零开始建网站的新手,知道下面十大忠告,可以少走弯路,早日走上康庄大道。 1、一定要做网站规划方案 一个网站的成功与否与建站前的网站规划有着极为重要的关系。在建立网站前应明确建设网站的目的,确定网站的功能,…...
做调查的网站推荐/石家庄关键词优化平台
对于一个网站刚上线,没人知道怎么办?登陆BAIDU、GOOGLE等各大搜索引擎提交你的网站信息吗?友情链接比你到各大搜索引擎提交来的更快。友情链接:网站之间链接互换是互相推广的一种重要方式。这样可以加深网站之间资源共享、用户共享、互相推荐等&#x…...