有理函数的不定积分习题
前置知识:有理函数的不定积分
习题
计算 ∫ x 3 + 1 x 4 − 3 x 3 + 3 x 2 − x d x \int \dfrac{x^3+1}{x^4-3x^3+3x^2-x}dx ∫x4−3x3+3x2−xx3+1dx
解:
\qquad 将被积函数的分母因式分解得
x 4 − 3 x 3 + 3 x 2 − x = x ( x − 1 ) 3 x^4-3x^3+3x^2-x=x(x-1)^3 x4−3x3+3x2−x=x(x−1)3
设被积函数有分解式
x 3 + 1 x 4 − 3 x 3 + 3 x 2 − x = A x + B x − 1 + C ( x − 1 ) 2 + D ( x − 1 ) 3 \dfrac{x^3+1}{x^4-3x^3+3x^2-x}=\dfrac Ax+\dfrac{B}{x-1}+\dfrac{C}{(x-1)^2}+\dfrac{D}{(x-1)^3} x4−3x3+3x2−xx3+1=xA+x−1B+(x−1)2C+(x−1)3D
将上式右端通分合并,分母相等,分子也应相等,得
x 3 + 1 = ( A + B ) x 3 + ( − 3 A − 2 B + C ) x 2 + ( 3 A + B − C + D ) x − A x^3+1=(A+B)x^3+(-3A-2B+C)x^2+(3A+B-C+D)x-A x3+1=(A+B)x3+(−3A−2B+C)x2+(3A+B−C+D)x−A
可列方程组
{ A + B = 1 − 3 A − 2 B + C = 0 3 A + B − C + D = 0 − A = 1 \begin{cases} A+B=1 \\ -3A-2B+C=0 \\ 3A+B-C+D=0 \\ -A=1 \end{cases} ⎩ ⎨ ⎧A+B=1−3A−2B+C=03A+B−C+D=0−A=1
解得
{ A = − 1 B = 2 C = 1 D = 2 \begin{cases} A=-1 \\ B=2 \\ C=1 \\ D=2 \end{cases} ⎩ ⎨ ⎧A=−1B=2C=1D=2
所以
\qquad 原式 = − ∫ 1 x d x + 2 ∫ 1 x − 1 d x + ∫ 1 ( x − 1 ) 2 d x + 2 ∫ 1 ( x − 1 ) 3 d x =-\int \dfrac 1xdx+2\int \dfrac{1}{x-1}dx+\int \dfrac{1}{(x-1)^2}dx+2\int \dfrac{1}{(x-1)^3}dx =−∫x1dx+2∫x−11dx+∫(x−1)21dx+2∫(x−1)31dx
= − ln ∣ x ∣ + 2 ln ∣ x − 1 ∣ − 1 x − 1 − 1 ( x − 1 ) 2 + C \qquad\qquad =-\ln|x|+2\ln|x-1|-\dfrac{1}{x-1}-\dfrac{1}{(x-1)^2}+C =−ln∣x∣+2ln∣x−1∣−x−11−(x−1)21+C
相关文章:
有理函数的不定积分习题
前置知识:有理函数的不定积分 习题 计算 ∫ x 3 1 x 4 − 3 x 3 3 x 2 − x d x \int \dfrac{x^31}{x^4-3x^33x^2-x}dx ∫x4−3x33x2−xx31dx 解: \qquad 将被积函数的分母因式分解得 x 4 − 3 x 3 3 x 2 − x x ( x − 1 ) 3 x^4-3x^33x^2-xx…...
PS滤镜插件-Nik Collection介绍
PS滤镜插件-Nik Collection介绍 什么是Nik CollectionNik Collection都包含什么? 什么是Nik Collection Nik Collection是一款PS滤镜插件套装,其包含了八款PS插件,功能涵盖修图、调色、降噪、胶片滤镜等方面。Nik Collection 作为很多摄影师…...
力扣刷题2023-05-04-1——题目:2614. 对角线上的质数
题目: 给你一个下标从 0 开始的二维整数数组 nums 。 返回位于 nums 至少一条 对角线 上的最大 质数 。如果任一对角线上均不存在质数,返回 0 。 注意: 如果某个整数大于 1 ,且不存在除 1 和自身之外的正整数因子,…...
【Java笔试强训 2】
🎉🎉🎉点进来你就是我的人了博主主页:🙈🙈🙈戳一戳,欢迎大佬指点! 欢迎志同道合的朋友一起加油喔🤺🤺🤺 目录 一、选择题 二、编程题 🔥排序子…...
术数基础背诵口诀整理
物象对应 五行方位天干神兽季节气候星宿生成数脏器木东甲乙青龙春风岁八肝火南丙丁朱雀夏热荧惑七心土中戊己?长夏湿镇五脾金西庚辛白虎秋燥太白九肺水北壬癸玄武冬寒辰六肾 口诀:东方甲乙青龙木,南方丙丁朱雀火,戊己勾陈腾蛇土&…...
Linux 基础语法 -2
如果我们以后再Linux当中 写了一些命名,导致程序我们不能进行操作了,如这个死循环: 他就会一直输出 "hello Linux" ,我们就使用 ctrl c 来终止因为程序或者指令异常,而导致我们无法进行指令输入ÿ…...
深度学习框架发展趋势
深度学习方法的发展是推动深度学习框架进步的最大动力,因此深度学习框架的功能和设计应顺应 算法和模型的发展趋势: 第一,易用性。深度学习领域仍处于快速发展期,参与者和学习者不断增加,新模型大量提出。因 此&#…...
Mysql为json字段创建索引的两种方式
目录 一、前言二、通过虚拟列添加索引(Secondary Indexes and Generated Columns)三、多值索引(Using multi-valued Indexes)四、官网地址 一、前言 JSON 数据类型是在mysql5.7版本后新增的,同 TEXT,BLOB …...
cassandra数据库入门-4
插入数据 在表中创建数据 您可以使用命令 INSERT 将数据插入表中一行的列中。 下面给出了在表中创建数据的语法。 INSERT INTO <tablename> (<column1 name>, <column2 name>....) VALUES (<value1>, <value2>....) USING <option> 例子…...
微服务学习——分布式搜索
初识elasticsearch 什么是elasticsearch elasticsearch是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。 elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域…...
ChatGPT根据销售数据、客户反馈、财务报告,自动生成报告,并根据不同利益方的需要和偏好进行调整?
该场景对应的关键词库(24个): 汇报对象身份(下属、跨部门平级、领导)、销售数据(销售额、销售量、销售渠道)、财务报告(营业收入、净利润、成本费用)、市场分析…...
Flask开发之环境搭建
目录 1、安装flask 2、创建Flask工程 编辑 3、初始化效果 4、运行效果 5、设置Debug模式 6、设置Host 7、设置Port 8、在app.config中添加配置 1、安装flask 如果电脑上从没有安装过flask,则在命令行界面输入以下命令: pip install flask 如果电…...
Java集合框架与ArrayList、LinkedList的区别
文章目录 Java集合框架与ArrayList、LinkedList的区别集合框架ArrayList特点操作 LinkedList特点操作 区别代码实践注意事项 Java集合框架与ArrayList、LinkedList的区别 在Java中,集合框架是非常重要的一部分。集合框架提供了各种数据结构和算法,可以方…...
python-pandas库
目录 目录 目录 1.pandas库简介(https://www.gairuo.com/p/pandas-overview) 2.pandas库read_csv方法(https://zhuanlan.zhihu.com/p/340441922?utm_mediumsocial&utm_oi27819925045248) 1.pandas库简介(http…...
C++学习day--01 C生万物
1、C/C学习中遇到的问题: 1. 大部分初学者,学习 C/C 都是从入门到放弃。 C/C太难吗? 2. 90% 以上的初学者,学完 C/C 以后,考试完了,书看完了, 但还是不会做项目 是学的不够好吗࿱…...
链表及链表的常见操作和用js封装一个链表
最近在学数据结构和算法,正好将学习的东西记录下来,我是跟着一个b站博主学习的,是使用js来进行讲解的,待会也会在文章后面附上视频链接地址,大家想学习的可以去看看 本文主要讲解单向链表,双向链表后续也会…...
源码安装工具checkinstall使用
每当从源码包编译程序时,安装过程很愉快,但当你想删除时,就很费脑筋了,你可能要去找你当时编译的目录执行make unistall,当然更可能的是,你早就把源码包给删除了,对于强迫症来说,这显…...
离散数学集合论
集合论 主要内容 集合基本概念 属于、包含幂集、空集文氏图等 集合的基本运算 并、交、补、差等 集合恒等式 集合运算的算律,恒等式的证明方法 集合的基本概念 集合的定义 集合没有明确的数学定义 理解:由离散个体构成的整体称为集合,…...
TypeScript 基础
类型注解 类型注解:约束变量的类型 示例代码: let age:number 18 说明:代码中的 :number 就是类型注解 解释:约定了类型,就只能给变量赋值该类型的值,否则,就会报错 错误演示:…...
MySQL InnoDB引擎 和 Oracle SGA
MySQL InnoDB引擎和Oracle SGA有以下异同: 异同点: 两者都是用来管理数据存储和访问的。 它们都可以通过调整参数来优化性能。 它们都支持事务处理和ACID属性。 它们都可以通过备份和恢复来保护数据。 异点: MySQL InnoDB引擎是一种存储…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
