当前位置: 首页 > news >正文

基于yolov7开发构建学生课堂行为检测识别系统

yolov7也是一款非常出众的目标检测模型,在我之前的文章中也有非常详细的教程系列的文章,感兴趣的话可以自行移步阅读即可。

《基于YOLOV7的桥梁基建裂缝检测》

《YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程》

《基于YOLOv7融合轻量级网络MobileOne的表格检测识别分析系统》

《助力安全作业生产,基于YOLOv7融合Transformer开发构建安全帽检测识别分析系统》

《助力不文明行文识别,基于YOLOv7融合RepVGG的遛狗牵绳行为检测识别分析系统》

学生课堂行为检测是一个比较有实际意义也比较有趣的应用场景,在我之前的一些文章中也有过相关方面的实践如下:

《基于yolov5轻量级的学生上课姿势检测识别分析系统》

《基于轻量级CNN开发构建学生课堂行为识别系统》

《yolov4-tiny目标检测模型实战——学生姿势行为检测》

可以看到:这里模型选用的大都是yolov5及之前的系列模型,对于新款模型的使用则有所欠缺。

这里主要就是基于yolov7来开发构建学生课堂行为检测识别分析系统,首先看下效果图:

 如果对yolov7的使用有问题可以看我超详细的教程:

YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程_Together_CZ的博客-CSDN博客

接下来简单看下数据集情况:

 数据来源于真实场景拍摄录制采集。

标注文件如下:

 实例标注内容如下所示:

1 0.546875 0.5487132352941176 0.09166666666666666 0.10477941176470588
0 0.40208333333333335 0.5873161764705882 0.14583333333333334 0.3841911764705882

训练数据配置文件如下:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test# number of classes
nc: 3# class names
names: ['study','sleep','phone']

模型文件如下:

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple# anchors
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# backbone
backbone:# [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True[[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2  [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4    [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7[-1, 1, MP, []],  # 8-P3/8[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14[-1, 1, MP, []],  # 15-P4/16[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21[-1, 1, MP, []],  # 22-P5/32[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28]# head
head:[[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, SP, [5]],[-2, 1, SP, [9]],[-3, 1, SP, [13]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -7], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 37[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 47[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57[-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],[[-1, 47], 1, Concat, [1]],[-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 65[-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],[[-1, 37], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[-1, -2, -3, -4], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 73[57, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[65, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[73, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],[[74,75,76], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)]

默认是100次epochde迭代计算,结果详情如下:

【混淆矩阵】

 【F1值曲线】

 【精确率曲线】

 【召回率曲线】

 【训练可视化】

最后将整体模型的推理计算集成到可视化界面中,同时实现图像推理检测和视频推理检测,效果实例如下所示:

【图像推理】

 【视频推理】

 

相关文章:

基于yolov7开发构建学生课堂行为检测识别系统

yolov7也是一款非常出众的目标检测模型,在我之前的文章中也有非常详细的教程系列的文章,感兴趣的话可以自行移步阅读即可。 《基于YOLOV7的桥梁基建裂缝检测》 《YOLOv7基于自己的数据集从零构建模型完整训练、推理计算超详细教程》 《基于YOLOv7融合…...

GPT-4 开始内测32k输入长度的版本了!你收到邀请了吗?

要说现在 GPT-4 最大的问题是什么?可能除了一时拿他没有办法的机器幻觉,就是卡死的输入长度了吧。尽管在一般的对话、搜索的场景里目前普通版本 GPT-4 的 8000 左右的上下文长度或许绰绰有余,但是在诸如内容生成、智能阅读等方面当下基础版的…...

如何用ChatGPT做新品上市推广方案策划?

该场景对应的关键词库(28个): 品牌、产品信息、新品、成分、属性、功效、人群特征、客户分析、产品定位、核心卖点、推广策略、广告、公关、线上推广、线下活动、合作伙伴、资源整合、预算、执行计划、监测、评估、微调方案、价值主张、营销策略、热点话…...

Qt之QGraphicsEffect的简单使用(含源码+注释)

文章目录 一、效果示例图1.效果演示图片3.弹窗演示图片 二.问题描述三、源码CFrame.hCFrame.cppCMainWindow.hCMainWindow.cpp 总结 一、效果示例图 1.效果演示图片 3.弹窗演示图片 二.问题描述 (因为全是简单使用,毫无技巧,直接描述问题&a…...

前端优化-css

1.css盒子模型 标准盒子模型,IE盒子模型 标准盒子模型:margin-border-padding-content IE盒子模型:margin-content(border-padding-content) 如何转换: box - sizing: border - box; // IE盒子模型 box - sizing: content - …...

第三方ipad笔哪个牌子好用?ipad触控笔推荐平价

至于选择苹果原装的电容笔,还是平替的电容笔,要看个人的需求而定,比如画图用的,可以用Apple Pencil;比如学习记笔记用的,可以用平替电容笔,目前的平替电容笔无论是品质还是性能,都非…...

windows10+detectron2完美安装教程

文章目录 前言下载detectron2安装Visual Studio 2019修改代码 前言 需要下载detectron2的github项目,安装vs2019 (强烈建议这个版本,其他的版本需要做更多地操作才能成功安装),默认其他环境没问题。 下载detectron2 链接:https…...

串口与wifi模块

经过以下学习,我们掌握: AT指令与wifi模块的测试方法:通过CH340直接测试,研究各种AT指令下wifi模块的响应信息形式。编程,使用串口中断接收wifi模块对AT指令的响应信息以及透传数据,通过判断提高指令执行的…...

上财黄烨:金融科技人才的吸引与培养

“金融科技企业在吸引人才前,应先完善人才培养机制,建立员工画像,有针对性地培训提高成员综合素质。” ——上海金融智能工程技术研究中心上海财经大学金融科技研究院秘书长&院长助理黄烨老师 01.何为数字人才? 目前大多数研…...

利用MQ事务消息实现分布式事务

MQ事务消息使用场景 消息队列中的“事务”,主要解决的是消息生产者和消息消费者的数据一致性问题。 拿我们熟悉的电商来举个例子。一般来说,用户在电商 APP 上购物时,先把商品加到购物车里,然后几件商品一起下单,最后…...

C++面向对象设计:深入理解多态与抽象类实现技巧

面向对象的多态 一、概念二、实现1. 静态多态1.1 函数重载1.2 运算符重载 2. 动态多态2.1 虚函数2.2 纯虚函数 三、虚函数1. 定义2. 实现3. 注意 四、纯虚函数1. 定义2. 作用 五、虚析构函数1. 定义2. 作用 六、 抽象类七、实现多态的注意事项1. 基类虚函数必须使用 virtual 关…...

长三角生物医药产业加速跑,飞桨螺旋桨为创新药企、医药技术伙伴装上AI大模型引擎...

生物医药是国家“十四五”规划中明确的战略性新兴产业之一。长三角地区是中国生物医药产业的排头兵,也是《“十四五”生物经济发展规划》的“生物经济先导区”之一。据《上海市生物医药产业投资指南》显示,2022 年上海市生物医药产业在 I 类国产创新药数…...

orin Ubuntu 20.04 配置 Realsense-ROS

librealsense安装 sudo apt-get install libudev-dev pkg-config libgtk-3-dev sudo apt-get install libusb-1.0-0-dev pkg-config sudo apt-get install libglfw3-dev sudo apt-get install libssl-dev sudo apt-get install ros-noetic-ddynamic-reconfigure二进制安装libr…...

MyBatis基础知识点总结

MyBatis了解 MyBatis 是什么? MyBatis 是支持定制化 SQL、存储过程以及高级映射的优秀的持久层框架 MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集 MyBatis 可以使用简单的XML或注解用于配置和原始映射,将接口和Java的 POJO&#x…...

校园企业车辆维修报修管理系统设计与开发

本研究课题重点主要包括了下面几大模块:在本基于.net平台的车辆系统中分为管理员和用户2个模块,主要功能包括管理员信息管理,车辆信息管理,驾驶员信息管理,事故信息管理,维修信息管理,维修点管理…...

【企业信息化】第1集 免费开源ERP: Odoo 16 CRM客户关系管理系统

文章目录 前言一、概览二、使用功能1.加快销售速度2.销售线索3.机会4.客户5.高效沟通6.报告7.集成 三、总结 前言 世界排名第一的免费开源ERP: Odoo 16 CRM客户关系管理系统。真正以客户为中心的CRM。 一、概览 获得准确预测 使用可操作数据,以做出更好的决定。 获…...

Flink创建Hudi的Sink动态表

工厂类 HoodieTableFactory 提供的创建动态表接口 createDynamicTableSource 和 createDynamicTableSink,对应的源码文件为:https://github.com/apache/hudi/blob/master/hudi-flink-datasource/hudi-flink/src/main/java/org/apache/hudi/table/HoodieT…...

人脸识别技术的安全性及其应用探讨

随着科技的不断发展,人脸识别技术已经成为了一个热门话题。人脸识别系统的出现,给人们的生活带来了极大的便利,同时也为一些犯罪分子提供了方便。因此,人脸识别技术的安全性和可靠性一直备受关注。 一、人脸识别技术的原理 人脸识…...

老域名查询工具- 在线域名批量查询工具

域名批量查询工具 域名批量查询工具是一种帮助用户快速查询多个域名信息的工具,通常能够自动扫描一组域名的WHOIS信息、DNS、IP地址、服务器等各种信息,并提供快速的结果反馈。 以下是域名批量查询工具主要的优点: 提高工作效率&#xff1a…...

JimuReport - 积木报表(一款免费Web报表工具)

一款免费的数据可视化报表,含报表和大屏设计,像搭建积木一样在线设计报表!功能涵盖,数据报表、打印设计、图表报表、大屏设计等! Web 版报表设计器,类似于excel操作风格,通过拖拽完成报表设计。…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...

在rocky linux 9.5上在线安装 docker

前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线, n r n_r nr​ 根接收天线的 MIMO 系…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...