【神经网络】tensorflow -- 期中测试试题
题目一:(20分)
请使用Matplotlib中的折线图工具,绘制正弦和余弦函数图像,其中x的取值范围是,效果如图1所示。
要求:
(1)正弦图像是蓝色曲线,余弦图像是红色曲线,线条宽度为2.5;
(2)标题为:“正/余弦函数图像”,字体颜色为黑色,大小为16;
(3)横坐标标签为:“x轴”,纵坐标标签为“y轴”,字体大小为12。

图1 正/余弦函数
① 代码
import matplotlib.pyplot as plt
import numpy as np# 用于正常显示中文标签
plt.rcParams['font.sans-serif'] = 'SimHei'
# 用来正常显示负号
plt.rcParams['axes.unicode_minus'] = False
# 获取x坐标
x = np.arange(-1 * np.pi,np.pi,0.1)
# 获取y坐标
y1=np.sin(x)y2=np.cos(x)plt.plot(x,y1,label='正弦',color='b',linewidth=2.5)plt.plot(x,y2,label='余弦',color='r',linewidth=2.5)
# x,y轴的最小最大值
plt.xlim(-1*np.pi,np.pi)plt.ylim(-1.5,1.5)
# 设置x,y轴的坐标刻度
plt.xticks([-np.pi,-np.pi/2,0,np.p/2,np.pi],[r'$-\pi$',r'$-\pi/2$',r'$0$',r'$\pi/2$',r'$\pi$'])plt.yticks([-1,0,1])plt.title('正/余弦函数图像',color='black',fontsize=16)plt.xlabel('x轴',fontsize=12)plt.ylabel('y轴',fontsize=12)plt.legend()plt.show()
② 实验结果

题目二:(40分)
请使用Windows中的“画图”工具,手写数字0-9,对图像进行适当的裁剪和处理后,保存为MNIST数据集的格式,具体步骤与要求如下:
步骤:
(1)使用Windows中的“画图”工具,手写数字0-9,并裁剪为适当尺寸的单个数字后,保存为图像文件,如图2所示;
(2)对裁剪过的图像进行反色、二值化处理,使图像呈现为黑底白字,如图3、4所示;
(3)对图像进行缩放,变换为2828像素的二值图像,如图5所示;
(4)将处理好的图像保存为与MNIST数据集相同的多维数组形式。
拓展要求:
在白纸上用黑色的笔写数字,拍照后,转换为MNIST数据集的格式。
提示:
(1)可以使用“全能扫描王”等工具优化所拍的图像,如图6所示;
(2)尝试用笔尖不同粗细的黑色笔写数字,看看什么情况下效果最好;
(3)在二值化之前先用高斯函数处理图像,看看效果有什么不同。
(高斯函数如表1所示。)


图2 图像裁剪

图3 反色处理

图4 图像二值化

图5 28×28像素图像
手写原图像 工具优化后的图像

图6 手写原图与工具优化后图像的对比图
① 主要函数及参数说明
def fomatPng(i) ,初始化图片函数,i为图片
② 代码
import numpy as npimport matplotlib.pyplot as pltfrom PIL import Image# 初始化图片
def fomatPng(i):# 打开图像,返回image对象img = Image.open("D:\\ui\haohaoxuexi\\神经网络\\me\\code\\image\\%d.png" % i)# 转换图像的色彩模式为二值图像img_gary = img.convert("1")# 将图像转换为数组arr_img_gary = np.array(img_gary)# 反色处理arr_img_fanzhi = np.invert(arr_img_gary)# 将数组转换为imgimg_fanzhi = Image.fromarray(arr_img_fanzhi)# 缩放图像为28*28img_small = img_fanzhi.resize((28, 28))plt.imshow(img_fanzhi)print(np.array(img_small))arr_img_small = np.array(img_small).reshape(1, 28, 28)return arr_img_smalltrain_x = fomatPng(0)
train_y = np.array((0, ))for i in range(1, 10):# 数组拼接train_x = np.concatenate((train_x, fomatPng(i)))train_y = np.append(train_y, i)print(train_x.shape)
print(train_y.shape)for i in range(0,10):plt.subplot(2, 5, i + 1)plt.axis("off")plt.imshow(train_x[i],cmap="gray")plt.show()
③ 实验结果

④ 实验小结
题目三:(40分)
Fashion MNIST数据集中包含10种类别、共7万张不同商品的正面图像。在Keras中集成了Fashion MNIST数据集,被划分为训练集和测试集。
下载数据集,并完成以下要求:
要求:
(1)下载Fashion MNIST数据集,读取训练集和测试集数据,分别放在NumPy数组train_x、train_y、test_x、test_y中(train_x:训练集图像,train_y:训练集标签,test_x:测试集图像,test_y:测试集标签)
(2)编写代码段,查看训练集和测试集的样本数、形状,并查看数据集中的10类标签分别是什么。
(3)从训练集中选择前10张图像,对每张图像分别进行以下变换:转置、上下翻转、顺时针旋转10度、逆时针旋转10度、水平镜像,将图像数量由10张增加到60张,并将处理后的图像保存在多维数组train_x_aug1中。
(4)将train_x_aug1中的图像显示在10×6子图布局的画布中,其中第1列为原图,第2-6列为变换后的效果,每列图像的上方显示变换效果。全局标题为“Fashion Mnist数据增强”。字体颜色、字号、以及其他版式细节自定义,要求清晰、简洁、美观。
(5)要求(3)中,进行旋转操作时,如果要求旋转方向和角度随机,应该如何做?尝试对前10张图像完成以上变换,将结果保存在多维数组train_x_aug2中,并以清晰、美观的形式展示结果。
(6)要求(5)中,如果要求变换方式也随机选择,应该如何做?尝试对前100张图像,每张图像实现5种随机变换,并将结果保存在多维数组train_x_aug3中。随机选择其中的10张原图,把变换的结果展示出来。
拓展要求:
对图像进行缩放时,图像的像素会改变,要求对图像分别缩小10%、放大10%,缩放后图像尺寸仍保持2828,应该怎么做?
相关函数如表2所示:
表2 相关函数
序号 函数 函数功能 函数相关库
1 fashion_mnist=tf.keras.datasets.fashion_mnist 下载Fashion MNIST数据集 Keras库
2 对象名.rotate() 图像旋转度 PIL库
3 Image(类名).fromarray(obj)
将对象obj从Numpy数组格式转化为Image格式 PIL库Image类
4 对象名.tolist() 将数组或矩阵转化为列表 Numpy库
5 对象名.append(obj) 在数组或列表末尾追加新的对象obj Python内置函数
6 random(类名).choice(seq) 从指定序列seq中返回一个随机选择的元素。Seq可以是字符串,列表,元组或任何其他种类的序列 Random库
7 对象名.pad(array, pad_width, mode,constant_values ) 向array数组中以mode模式,按照pad_width指定的维度,填充constant_values指定的数值 Numpy库
① 主要函数及参数说明
1)展示图片函数:pics为图片数组,title为标题
def showPic(pics, titles):
2)显示标签函数:i为图片的下标
def get_fasion_mnist_labels(i):
3)随机变换函数:img为要变换的图片
def randomTran(img):
② 代码
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
def show(train_x, titles):plt.rcParams['font.sans-serif'] = "SimHei" #字体设置plt.figure(figsize=(8, 15)) #画布大小设置index = 1for i in train_x:plt.subplot(10, 6, index) #10行6列 第x个位置的图片plt.title(titles[index % 6 - 1], fontsize=6) #取标签 取余的方式 循环输出每组图片plt.axis("off") #关闭坐标轴plt.imshow(i) #显示第几张图片index += 1plt.suptitle("Fashion Mnist 数据增强")plt.show()
def Choose_way(img):k = np.random.randint(0, 6, 1) #创建一个只有0-5的随机数组 用于随机选择处理方式if k == 0:return np.array(img.transpose(Image.TRANSPOSE)).reshape(1, 28, 28) # 转置if k == 1:return np.array(img.transpose(Image.FLIP_TOP_BOTTOM)).reshape(1, 28, 28) # 上下翻转if k == 2:return np.array(img.rotate(-10)).reshape(1, 28, 28) # 顺时针10度if k == 3:return np.array(img.rotate(10)).reshape(1, 28, 28) # 逆时针10度if k == 4:return np.array(img.transpose(Image.FLIP_LEFT_RIGHT)).reshape(1, 28, 28) # 水平镜像if k == 5:return np.array(img.transpose(Image.TRANSVERSE)).reshape(1, 28, 28) # 上下翻转
def Show_message():print("训练集x的样本数:", len(train_x))print("训练集y的样本数:", len(train_y))print("测试集x的样本数:", len(test_x))print("测试集y的样本数:", len(test_y))print("训练集x的形状:", train_x.shape)print("训练集y的形状:", train_y.shape)print("测试集x的形状:", test_x.shape)print("测试集y的形状", test_y.shape)
def Show_label_train_y():class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag','Ankle boot']label_train_y = np.sort(train_y) # 对数据集里面的值进行从小到大排序 无数个000 111 222 - 99999temp = -1for i in label_train_y: #遍历 且防止输出重复的数字if i > temp:print("数据集中类标签有:",i+1, class_names[i])temp = i
def mode1():train_x_aug1 = train_x[0].reshape(1, 28, 28)for i in range(0, 10):img = Image.fromarray(train_x[i])# 第一幅图不处理,第二幅图处理if i != 0:train_x_aug1 = np.concatenate((train_x_aug1, train_x[i].reshape(1, 28, 28))) # 将第一幅图片加入trainx_x_aug1train_x_aug1 = np.concatenate((train_x_aug1, np.array(img.transpose(Image.TRANSPOSE)).reshape(1, 28, 28))) # 转置train_x_aug1 = np.concatenate((train_x_aug1, np.array(img.transpose(Image.FLIP_TOP_BOTTOM)).reshape(1, 28, 28))) # 上下翻转train_x_aug1 = np.concatenate((train_x_aug1, np.array(img.rotate(-10)).reshape(1, 28, 28))) # 顺时针10度train_x_aug1 = np.concatenate((train_x_aug1, np.array(img.rotate(10)).reshape(1, 28, 28))) # 逆时针10度train_x_aug1 = np.concatenate((train_x_aug1, np.array(img.transpose(Image.FLIP_LEFT_RIGHT)).reshape(1, 28, 28))) # 水平镜像titles = ['原图', '转置', '上下翻转', '顺时针旋转10度', '逆时针旋转10度', '水平镜像']show(train_x_aug1, titles) # train_x_aug1 包含了60张图print(train_x_aug1)def mode2():train_x_aug2 = train_x[0].reshape(1, 28, 28)for i in range(0, 10): #依次处理10幅图 内部再对每幅图处理成6种状态k = np.random.randint(-180, 180, 5) # 旋转角度随机数img = Image.fromarray(train_x[i])if i != 0:train_x_aug2 = np.concatenate((train_x_aug2, train_x[i].reshape(1, 28, 28)))for j in range(0,5):train_x_aug2 = np.concatenate((train_x_aug2, np.array(img.rotate(k[j])).reshape(1, 28, 28))) #循环四次添加各种角度处理后的图片titles = ['原图', '随机1', '随机2', '随机3', '随机4', '随机5']show(train_x_aug2, titles)def mode3():train_x_aug3 = train_x[0].reshape(1, 28, 28)for i in range(0, 100):img = Image.fromarray(train_x[i]) #取100张图片 每张图片随机5种处理方式if i != 0:train_x_aug3 = np.concatenate((train_x_aug3, Choose_way(img)))train_x_aug3 = np.concatenate((train_x_aug3, Choose_way(img)))train_x_aug3 = np.concatenate((train_x_aug3, Choose_way(img)))train_x_aug3 = np.concatenate((train_x_aug3, Choose_way(img)))train_x_aug3 = np.concatenate((train_x_aug3, Choose_way(img)))train_x_aug3 = np.concatenate((train_x_aug3, Choose_way(img)))r = np.random.randint(0, 100, 10)train_x_aug3_show = train_x_aug3[r[0]*6:r[0] * 6 + 6 ]for x in range(1, 10): #在前6张图后面再加9次6张图train_x_aug3_show = np.concatenate((train_x_aug3_show, train_x_aug3[r[x] * 6:r[x] * 6 + 6]))titles = ['原图', '随机1', '随机2', '随机3', '随机4', '随机5']show(train_x_aug3_show, titles)
if __name__ == '__main__':fashion_mnist = tf.keras.datasets.fashion_mnist #下载数据集(train_x, train_y), (test_x, test_y) = fashion_mnist.load_data()#train_x:训练集图像,train_y:训练集标签,test_x:测试集图像,test_y:测试集标签Show_message() # 查看训练集和测试集的样本数、形状Show_label_train_y() #查看数据集中的10类标签分别是什么 标签是放在train_y里面的#取从第一幅图开始的10张图进行处理mode1()mode2()mode3()
③ 实验结果
中间部分图省略

④ 实验小结
相关文章:
【神经网络】tensorflow -- 期中测试试题
题目一:(20分) 请使用Matplotlib中的折线图工具,绘制正弦和余弦函数图像,其中x的取值范围是,效果如图1所示。 要求: (1)正弦图像是蓝色曲线,余弦图像是红色曲线,线条宽度…...
计算机基础--计算机存储单位
一、介绍 计算机中表示文件大小、数据载体的存储容量或进程的数据消耗的信息单位。在计算机内部,信息都是釆用二进制的形式进行存储、运算、处理和传输的。信息存储单位有位、字节和字等几种。各种存储设备存储容量单位有KB、MB、GB和TB等几种。 二、基本存储单元…...
大数据Doris(十六):分桶Bucket和分区、分桶数量和数据量的建议
文章目录 分桶Bucket和分区、分桶数量和数据量的建议 一、分桶Bucket...
【webrtc】web端打开日志及调试
参考gist Chrome Browser debug logs sawbuck webrtc-org/native-code/logging 取日志 C:\Users\zhangbin\AppData\Local\Google\Chrome\User Data C:\Users\zhangbin\AppData\Local\Google\Chrome\User Data\chrome_debug.logexe /c/Program Files/Google/Chrome/Applicationz…...
C++ Primer第五版_第十六章习题答案(61~67)
文章目录 练习16.61练习16.62Sales_data.hex62.cpp 练习16.63练习16.64练习16.65练习16.66练习16.67 练习16.61 定义你自己版本的 make_shared。 template <typename T, typename ... Args> auto make_shared(Args&&... args) -> std::shared_ptr<T> {r…...
python定时任务2_celery flower计划任务
启动worker: celery -A tasks worker --loglevelerror --poolsolo worker启动成功 启动beat celery -A tasks beat --loglevelinfo beat启动成功 启动flower celery -A tasks flower --loglevelinfo flower启动成功,然后进入http://localhost:5555 可…...
地狱级的字节跳动面试,6年测开的我被按在地上摩擦.....
前几天我朋友跟我吐苦水,这波面试又把他打击到了,做了快6年软件测试员。。。为了进大厂,也花了很多时间和精力在面试准备上,也刷了很多题。但题刷多了之后有点怀疑人生,不知道刷的这些题在之后的工作中能不能用到&…...
怎么开发外贸网站
随着全球经济的发展,越来越多的企业选择走上国际化的道路,开展国际贸易业务。而外贸网站是一个相对常见的开展国际贸易业务的平台。那么,如何开发一款优秀的外贸网站呢? 首先,我们需要明确外贸网站的目标用户群体。由…...
从 Elasticsearch 到 Apache Doris,10 倍性价比的新一代日志存储分析平台|新版本揭秘
日志数据的处理与分析是最典型的大数据分析场景之一,过去业内以 Elasticsearch 和 Grafana Loki 为代表的两类架构难以同时兼顾高吞吐实时写入、低成本海量存储、实时文本检索的需求。Apache Doris 借鉴了信息检索的核心技术,在存储引擎上实现了面向 AP …...
H5 + C3基础(H5语义化标签 多媒体标签 新表单标签)
H5语义化标签 & 多媒体标签 & 新表单标签 H5语义化标签多媒体标签新表单标签新表单标签属性 H5语义化标签 以下常用标签均为块级元素 :带有语义的 div headernavsectionarticleasidefooter 多媒体标签 video mp4格式一般浏览器都支持,没办法…...
低代码平台选择指南:如何选出最适合你的平台?
低代码平台是一种新兴的软件开发工具,它们提供了一个简单易用的界面来设计、开发和部署应用程序,使用者无需编写复杂的代码。近年来,随着云计算和数字化转型的高速发展,越来越多的企业开始探索低代码平台以加快应用程序的开发速度…...
软考A计划-重点考点-专题十二(JAVA程序设计)
点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例 👉关于作者 专注于Android/Unity和各种游戏开发技巧,以及各种资源分享&am…...
亚马逊云科技工业数据湖解决方案,助力企业打通各业务场景数据壁垒
数字化浪潮蓬勃发展,制造行业数字化转型热度迭起,根据麦肯锡面向全球400多家制造型企业的调研表明,几乎所有细分行业都在大力推进数字化转型,高达94%的受访者都称,数字化转型是他们危机期间维持正常运营的关键。 数字…...
修改lib64/l.ibc.so6导致系统命令都不能用
问题:想升级libc-2.12.so到libc2.17,拷贝了一个libc2.17到lib64下,然后建立软连接到l.ibc.so6,导致系统除了cd之类的命令,其他都不能使用 报错:relocation error: /usr/lib64/libc.so.6: symbol _dl_start…...
Web(一)-- 创建一个简单的Web项目(idea 2022版)
目录 1. 在idea里面点击文件-新建-项目 2. 新建项目-更改名称为自己想要的项目名称-创建...
前一篇文章最后一个算法校正
前一篇文章最后一个算法的实现有一点问题,问题原因来自python中list删除数据会导致数据前移,针对这个特性目前没有一个很好的解决方案,所以在这里使用另外一个角度去实现,即将报到9的人编号置为0,在下次喊的时候&#…...
测试外包干了4年,我废了...
这是来自一位粉丝的投稿内容如下: 先说一下自己的个人情况,大专毕业,18年通过校招进入湖南某外包公司,干了接近4年的软件测试外包工作,马上2023年秋招了,感觉自己不能够在这样下去了,长时间呆在…...
CPU组成元素:运算器+控制器
目录标题 一、计算机硬件组成概述(Introduction to Computer Hardware Components)1.1 计算机系统的基本构架(Basic Architecture of Computer Systems)1.2 CPU的组成1.3运算器(Arithmetic Unit)、控制器&a…...
计算机网络——主机IP地址、子网掩码、广播地址、网络数、主机数计算方法
目录 一、概念 1.1 主机IP地址 1.2 子网掩码 1.3 广播地址 1.4 子网划分 二、计算 2.1 已知IP地址和子网掩码,计算网络地址和主机地址: 2.2 已知IP地址和子网掩码,计算广播地址: 2.3 已知子网掩码,计算主机数…...
Unity 后处理(Post-Processing) -- (1)概览
在Unity中,后处理(Post-Processing)是在相机所捕捉的图像上应用一些特殊效果的过程,后处理会让图像视觉效果更好(前提是做的好)。 这些效果的范围有非常细微的颜色调整,也包括整体的美术风格的大…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
