当前位置: 首页 > news >正文

leetcode刷题---递归思想

leetcode刷题---递归思想)

  • 1.1 递归介绍
  • 1.2 基本步骤
  • 1.3 代表题目
    • 1.3.1 入门题---青蛙跳
    • 1.3.2.1 初级题
      • 226.翻转二叉树
      • 112.路径总和
    • 1.3.3 中级题---汉诺塔问题
    • 1.3.4 进阶题---细胞分裂

1.1 递归介绍

如果在函数中存在着调用函数本身的情况,这种现象就叫递归。

递归的思想就是,将大问题分解为小问题来求解,然后再将小问题分解为更小的问题。这样一层层地分解,直到问题规模被分解得足够小,不用继续分解,可以直接计算结果为止。

如果把这个一层层分解的过程画成图,它其实就是一颗树,叫做递归树。以斐波那契数列为例子:

    def fib(n):if n <= 1:return 1return fib(n - 1 ) + fib(n - 2)

递归树如下图所示:
在这里插入图片描述
在这里插入图片描述

递归在“归”的过程中,符合后进先出的规则,所以需要用一个堆栈的数据结构。递归过程中函数调用会自动产生栈帧,当函数帧栈的深度越来越大的时候,栈也越来越大,如果递归没有终止条件,就会爆栈。所有基于递归思想实现的算法,第一步要思考的就是递归的终止条件。

进一步剖析「递归」,先有「递」再有「归」,「递」的意思是将问题拆解成子问题来解决, 子问题再拆解成子子问题,…,直到被拆解的子问题无需再拆分成更细的子问题(即可以求解),「归」是说最小的子问题解决了,那么它的上一层子问题也就解决了,上一层的子问题解决了,上上层子问题自然也就解决了。

递归的一般结构

    def func():if (符合边界条件):return# 某种形式的调用func()

1.2 基本步骤

(1) 定义一个函数,明确函数功能

(2) 寻找问题与子问题之间的关系(递推公式)

(3) 将递推公式在定义的函数中实现

(4) 推导时间复杂度,判定是否可以接受,无法接受更换算法

1.3 代表题目

1.3.1 入门题—青蛙跳

一只青蛙可以一次跳 1 级台阶或者一次跳 2 级台阶,例如:
跳上第 1 级台阶只有一种跳法:直接跳 1 级即可。
跳上第 2 级台阶有两种跳法:每次跳 1 级,跳两次;或者一次跳 2 级。
问要跳上第 n 级台阶有多少种跳法?:

一只青蛙只能跳一步或两步台阶,自上而下地思考,也就是说如果要跳到 n 级台阶只能从 从 n-1 或 n-2 级跳 。那么从以上分析可得 f(n) = f(n-1) + f(n-2),显然这就是我们要找的问题与子问题的关系,而显然当 n = 0, n = 1, 即跳一二级台阶是问题的最终解 。

递归解法:

def numWays(n):if n == 0 or n == 1:return 1return numWays(n - 1) + numWays(n - 2)时间复杂度高,因为在递归过程中有大量的重复计算。

优化1:空间换时间

def numWays(n):mid = [0] * (n + 1)if n == 0 or n == 1:return 1mid[0] = mid[1] = 1for i in range(2, n + 1):mid[i] = mid[i - 1] + mid[i - 2]return mid[n]空间换时间,时间复杂度O(n),空间复杂度O(n)

优化2:自下而上的方法

def numWays(n):if n == 0 or n == 1:return 1res = 0pre = 1next = 1for i in range(2, n + 1):res = pre + nextpre = nextnext = resreturn res时间复杂度O(n),空间复杂度O(1)

简单总结一下: 分析问题我们需要采用自上而下的思维,而解决问题有时候采用自下而上的方式能让算法性能得到极大提升,思路比结论重要 。

1.3.2.1 初级题

226.翻转二叉树

在这里插入图片描述
翻转(根节点) = 翻转(根节点的左节点) + 翻转(根节点的右节点) ,即 invert(root) = invert(root->left) + invert(root->right) ,递归的终止条件是当结点为叶子结点时终止(因为叶子节点没有左右结点) 。由于我们会对每一个节点都去做翻转,所以时间复杂度是 O(n), 如果是完全二叉树,空间复杂度为树的高度O(logn) 。最坏情况,如果此二叉树只有左节点,没有右节点,则树的高度即结点的个数 n,此时空间复杂度为 O(n),总的来看,空间复杂度为O(n) 。

def invertTree(self, root):# 叶子节点不能翻转if not root:return root# 翻转右节点下的左右节点right = self.invertTree(root.right)# 翻转左节点下的左右节点left = self.invertTree(root.left)# 左右节点下的二叉树翻转好后,翻转根节点的左右节点root.left = rightroot.right = leftreturn root

112.路径总和

给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。说明: 叶子节点是指没有子节点的节点。示例: 
给定如下二叉树,以及目标和 sum = 22,5/ \4   8/   / \11  13  4/  \      \7    2      1
返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。

是否存在一条路径,从当前节点root到叶子节点的路径和为sum,这个问题可以转化为:是否存在从当前节点的子节点到叶子的路径和为sum-子节点值。即:

hasPathSum(root,sum)=hasPathSum(root.left,sum-root.val) or hasPathSum(root.right,sum-root.val)

递归终止条件是当前节点是叶子节点,直接判断sum是否等于节点值即可。

def hasPathSum(self, root: Optional[TreeNode], targetSum: int) -> bool:if not root:return Falseif not root.left and not root.right:return targetSum == root.valreturn self.hasPathSum(root.left, targetSum - root.val) or self.hasPathSum(root.right, targetSum - root.val)

1.3.3 中级题—汉诺塔问题

在经典汉诺塔问题中,有 3 根柱子及 N 个不同大小的穿孔圆盘,盘子可以滑入任意一根柱子。一开始,所有盘子自上而下按升序依次套在第一根柱子上(即每一个盘子只能放在更大的盘子上面)。移动圆盘时受到以下限制:
(1) 每次只能移动一个盘子;
(2) 盘子只能从柱子顶端滑出移到下一根柱子;
(3) 盘子只能叠在比它大的盘子上。请编写程序,用栈将所有盘子从第一根柱子移到最后一根柱子。你需要原地修改栈。

将n个圆盘经由B移到C上,可以按照以下三个步骤来分析,首先将A上面的n-1个圆盘看成是一个圆盘:

  1. 将A上面的n-1个圆盘经由C移到B
  2. 将A底下最大的圆盘移到C
  3. 再将B上的n-1个圆盘经由A移到C上

move(n from A to C) = move(n-1 from A to B) + move(A to C) + move(n-1 from B to C)

终止条件我们很容易看出,当 A 上面的圆盘只有一个的时候。

# 将 n 个圆盘从 a 经由 b 移动到 c 上
def hanota(A, B, C):n = len(A)move(n, A, B, C)def move(n, A, B, C):if n == 1:C.append(A.pop())return# 将A上面的n-1个圆盘经由C移动到Bmove(n-1, A, C, B)# 将A底下最大的那块移动到CC.append(A.pop())# 将B上的n-1个圆盘经由A移动到Cmove(n - 1, B, A, C)

1.3.4 进阶题—细胞分裂

相关文章:

leetcode刷题---递归思想

leetcode刷题---递归思想&#xff09;1.1 递归介绍1.2 基本步骤1.3 代表题目1.3.1 入门题---青蛙跳1.3.2.1 初级题226.翻转二叉树112.路径总和1.3.3 中级题---汉诺塔问题1.3.4 进阶题---细胞分裂1.1 递归介绍 如果在函数中存在着调用函数本身的情况&#xff0c;这种现象就叫递…...

ThreadLocal 源码级别详解

ThreadLocal简介 稍微翻译一下&#xff1a; ThreadLocal提供线程局部变量。这些变量与正常的变量不同&#xff0c;因为每一个线程在访问ThreadLocal实例的时候&#xff08;通过其get或set方法&#xff09;都有自己的、独立初始化的变量副本。ThreadLocal实例通常是类中的私有静…...

训练营day17

110.平衡二叉树 力扣题目链接 给定一个二叉树&#xff0c;判断它是否是高度平衡的二叉树。 本题中&#xff0c;一棵高度平衡二叉树定义为&#xff1a;一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。 示例 1: 给定二叉树 [3,9,20,null,null,15,7] 返回 true 。 示…...

Nodejs原型链污染

Nodejs与JavaScript和JSON 有一些人在学习JavaScript时会分不清Nodejs和JavaScript之间的区别&#xff0c;如果没有node&#xff0c;那么我们的JavaScript代码则由浏览器中的JavaScript解析器进行解析。几乎所有的浏览器都配备了JavaScript的解析功能&#xff08;最出名的就是…...

【Vue3】element-plus中el-tree的递归处理赋值回显问题

目录一&#xff1a;先获取所有权限tree二&#xff1a;在获取所有该角色能有的权限tree三&#xff1a;递归处理勾选tree节点由于项目是从0-1开始构建的 rbac都需要重新构建对接 所以涉及到了权限管理和菜单管理 一级菜单包含多个二级菜单 若二级不全选&#xff0c;则一级显示 半…...

C语言---宏

专栏&#xff1a;C语言 个人主页&#xff1a;HaiFan. 专栏简介&#xff1a;本专栏主要更新一些C语言的基础知识&#xff0c;也会实现一些小游戏和通讯录&#xff0c;学时管理系统之类的&#xff0c;有兴趣的朋友可以关注一下。 #define预处理预定义符号define#define定义标识符…...

算法导论—路径算法总结

图算法 单源最短路径 Bellman-Ford算法&#xff1a; 顶点为V&#xff0c;边为E的图 对每条边松弛|V|-1次边权可以为负值若存在一个可以从源结点到达的权值为负值的环路&#xff0c;算法返回False时间复杂度&#xff1a;O(VE) 有向无环图单源最短路径 DAG-SHORTEST-PATHS …...

程序环境--翻译+执行

ANSI C标准下&#xff0c;有两种程序环境。 第1种是翻译环境&#xff0c;在这个环境中源代码被转换为可执行的机器指令。 翻译环境包括&#xff1a;预处理&#xff08;预编译&#xff09;编译汇编链接。四个步骤。 第2种是执行/运行环境&#xff0c;它用于实际执行代码。 链接…...

微信小程序内部那些事

微信小程序没有window、document&#xff0c;它更像是一个类似 Node.js 的宿主环境。因此在小程序内部不能使用 document.querySelector 这样的选择器&#xff0c;也不支持 XMLHttpRequest、location、localStorage 等浏览器 API&#xff0c;只能使用小程序自己提供的 API&…...

这是从零在独自开开发,将是副业赚钱最好的平台!

文章目录最重要的事情放前面1.前言2.简单介绍一下3.【独自开】介绍3.1 分层标准化平台架构3.2 集成第三方数字接口3.3 支持各个行业的系统定制开发4.如何在【独自开】赚钱获取收益?4.1 如何称为【独自开】开发者?最重要的事情放前面 通过平台的审核也可以得到相应的奖金&…...

Spring MVC 之获取参数(对象、JSON格式数据、URL地址参数、文件、Cookie)

文章目录1. 获取单个参数2. 获取多个参数3. 获取对象4. 后端参数重命名 RequestParam5. 接收 JSON 格式的数据 RequestBody6. 从 URL 地址中获取参数 PathVariable7. 上传文件 RequestPart8. 获取Cookie (CookieValue)/Session/header8.1 获取 Request 和 Response 对象8.2 获取…...

永磁同步电机中BEMF电阻的作用

一、电路原理图 二、原理分析 如图一我们测的是相电压&#xff0c;从理论上我们知道我们测得相电压是一个马鞍波形&#xff0c;马鞍波形中并没有隐含 转子的位置和速度信息。那么为什么我们还要有这样一个电路呢&#xff1f; 这个问题其实困惑了我好久&#xff1f;直到有一天…...

JAVA练习45-二叉树的层序遍历

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、题目二叉树的层序遍历 …...

超高精度PID调节器的特殊功能(3)——变送输出(转发)功能及其应用

摘要&#xff1a;变送输出是高级PID控制器的一项重要扩展功能&#xff0c;可用于多区控制、串级控制、比值控制和差值控制以及数据采集及记录。为展示变送输出功能的强大作用&#xff0c;本文主要针对超高精度VPC 2021系列PID控制器&#xff0c;介绍了变送输出的具体功能、参数…...

【C++】nullptr C++中的空指针(C++11)

前言 在平时我们写C/C代码时你可能会看到有人使用NULL表示空指针&#xff0c;也有人用nullptr表示空指针&#xff0c;那么你可能会很好奇它们都是空指针吗&#xff1f;为什么空指针有两种写法&#xff1f;下面就带你了解这背后的原理。 我们都知道NULL是C语言中的空指针&#x…...

笔试题-2023-大疆-数字IC设计【纯净题目版】

回到首页:2023 数字IC设计秋招复盘——数十家公司笔试题、面试实录 推荐内容:数字IC设计学习比较实用的资料推荐 题目背景 笔试时间:2022.08.07应聘岗位:数字IC设计笔试平台:赛码题目评价 难易程度:★★★★★知识覆盖:★★★☆☆超纲范围:★★★☆☆值得一刷:★★★…...

Python dict字典方法完全攻略(全)

我们知道&#xff0c;Python 字典的数据类型为 dict&#xff0c;我们可使用 dir(dict) 来查看该类型包含哪些方法&#xff0c;例如&#xff1a; >>> dir(dict) [clear, copy, fromkeys, get, items, keys, pop, popitem, setdefault, update, values] keys()、value…...

用“AI“挑选一件智慧礼物

在久违的烟火气回归之际&#xff0c;充满希望的生活可能就从精心挑选一件新年礼物开始。在罗列礼品清单时&#xff0c;你会想到 “数据”也是其中之一吗&#xff1f;事实上&#xff0c;几乎所有时下最受欢迎的带有“智能”一词的设备&#xff0c;都是由大量高质量的数据创建。我…...

【Spark分布式内存计算框架——Spark Core】4. RDD函数(下) 重分区函数、聚合函数

重分区函数 如何对RDD中分区数目进行调整&#xff08;增加分区或减少分区&#xff09;&#xff0c;在RDD函数中主要有如下三个函数。 1&#xff09;、增加分区函数 函数名称&#xff1a;repartition&#xff0c;此函数使用的谨慎&#xff0c;会产生Shuffle。 2&#xff09;、…...

智能工厂自动化设备如何将数据采集到物联网云平台上

制造业工厂在进行生产管理、数字化转型升级的过程中&#xff0c;大量自动化设备的数据采集上云一直是困扰厂商的难题之一。因设备种类多、工艺复杂、设备老旧无多余通信接口导致数据无法集中、工艺无法实时管控&#xff0c;加上设备服务商的本地支持比较有限&#xff0c;因此设…...

SpringBoot整合Mybatis的核心原理

0. 前言&#xff1a;1. 自动配置类MybatisAutoConfiguration&#xff1a;1.1. SqlSessionFactory的生成&#xff1a;1.2. Mapper的扫描和代理生成&#xff1a;1.2.1. MapperScannerConfigurer1.2.2. MapperFactoryBean1.2.3. getMapper生成代理对象2. 小结&#xff1a;0. 前言&…...

滴滴一面:order by 调优10倍,思路是啥?

背景说明&#xff1a; Mysql调优&#xff0c;是大家日常常见的调优工作。 所以&#xff0c;Mysql调优是一个非常、非常核心的面试知识点。 在40岁老架构师 尼恩的读者交流群(50)中&#xff0c;其相关面试题是一个非常、非常高频的交流话题。 近段时间&#xff0c;有小伙伴面…...

Vue框架学习篇(五)

Vue框架学习篇(五) 1 组件 1.1 组件的基本使用 1.1.1 基本流程 a 引入外部vue组件必须要的js文件 <script src"../js/httpVueLoader.js"></script>b 创建.vue文件 <template><!--公共模板内容--></template><script><!…...

(蓝桥杯 刷题全集)【备战(蓝桥杯)算法竞赛-第1天(基础算法-上 专题)】( 从头开始重新做题,记录备战竞赛路上的每一道题 )距离蓝桥杯还有75天

&#x1f3c6;&#x1f3c6;&#x1f3c6;&#x1f3c6;&#x1f3c6;&#x1f3c6;&#x1f3c6; 欢迎观看我的博客&#xff0c;如有问题交流&#xff0c;欢迎评论区留言&#xff0c;一定尽快回复&#xff01;&#xff08;大家可以去看我的专栏&#xff0c;是所有文章的目录&a…...

C++——继承那些事儿你真的知道吗?

目录1.继承的概念及定义1.1继承的概念1.2 继承定义1.2.1定义格式1.2.2继承关系和访问限定符1.2.3继承基类成员访问方式的变化2.父类和子类对象赋值转换3.继承中的作用域4.派生类的默认成员函数5.继承与友元6. 继承与静态成员7.复杂的菱形继承及菱形虚拟继承如何解决数据冗余和二…...

leetcode 困难 —— N 皇后(简单递归)

&#xff08;不知道为啥总是给这种简单的递归设为困难题&#xff0c;虽然优化部分很不错&#xff0c;但是题目太好过了&#xff09; 题目&#xff1a; 按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个…...

AWS实战:Dynamodb到Redshift数据同步

AWS Dynamodb简介 Amazon DynamoDB 是一种完全托管式、无服务器的 NoSQL 键值数据库&#xff0c;旨在运行任何规模的高性能应用程序。DynamoDB能在任何规模下实现不到10毫秒级的一致响应&#xff0c;并且它的存储空间无限&#xff0c;可在任何规模提供可靠的性能。DynamoDB 提…...

机器学习评估指标的十个常见面试问题

评估指标是用于评估机器学习模型性能的定量指标。它们提供了一种系统和客观的方法来比较不同的模型并衡量它们在解决特定问题方面的成功程度。通过比较不同模型的结果并评估其性能可以对使用哪些模型、如何改进现有模型以及如何优化给定任务的性能做出正确的决定&#xff0c;所…...

常见的安全问题汇总 学习记录

声明 本文是学习2017中国网站安全形势分析报告. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 2017年重大网站安全漏洞 CVE-2017-3248 &#xff1a;WebLogic 远程代码执行 2017年1月27日&#xff0c;WebLogic官方发布了一个编号为CVE-2017-3248 的…...

元宵晚会节目预告没有岳云鹏,是不敢透露还是另有隐情

在刚刚结束的元宵节晚会上&#xff0c;德云社的岳云鹏&#xff0c;再一次参加并引起轰动&#xff0c;并获得了观众朋友们的一致好评。 不过有细心的网友发现&#xff0c;早前央视元宵晚会节目预告&#xff0c;并没有看到小岳岳&#xff0c;难道是不敢提前透露&#xff0c;怕公布…...

网站推广文章 优帮云/seo培训讲师招聘

【简介】   lucene.net好多人都知道的吧&#xff0c;反正我是最近才好好的看了一下&#xff0c;别笑我拿历史当新闻哦&#xff0c;不太了解Lucence的朋友先听我说两句哦。Lucene的知识主要分为索引、搜索、分析器、性能优化几个部分。索引和搜索没啥可说的&#xff0c;看几个…...

芜湖营销型网站建设/免费html网站模板

Python笔记-爬取Boss直聘的招聘信息 最近迷上了爬虫&#xff0c;爬取招聘信息&#xff0c;存在MongoDB上 代码思路和上一篇爬取酷狗TOP500差不多&#xff0c;但是在使用CSS选择器的时候&#xff0c;有两组信息是连在一起&#xff0c;所以使用正则来获取 本来使用串行爬取完美…...

塑料袋销售做哪个网站推广好/代码优化

Hexo 我的博客到目前为止&#xff0c;可以分为3个阶段&#xff1a;博客园->Octopress->Hexo 我并没有经历过经典的WordPress的阶段&#xff0c;考虑到买域名、租VPS的费用&#xff0c;及麻烦程度。 我博客园的CSS经历过两次大修改&#xff0c;我一直寻求一种较为Geek风格…...

wordpress首页底部模板修改/上海百度竞价点击软件

目录 一、UDP简介 二、UDP的特点 2.1 面向无连接 2.2 有单播&#xff0c;多播&#xff0c;广播的功能 2.3 UDP是面向报文的 2.4 不可靠性&#xff08;无拥塞控制&#xff09; 2.5 首部开销小&#xff0c;传输数据报文时是很高效的 三、UDP首部 四、UDP校验 4.1 UDP校验和 4.2 …...

北京市建设工程质监站网站/国家卫健委每日疫情报告

Ubuntu去掉命令行前用户名和主机名方法$ vi ~/.bashrc按a或i进入编辑模式PS1${debian_chroot:(debian_chroot)}\w\$ 默认为PS1${debian_chroot:(debian_chroot)}\u\h:\w\$ 注&#xff1a;u为username&#xff0c;h为hostname按Esc键退出编辑模式:wq (保存并退出)$ source ~/.…...

青岛做网站公司/bt磁力bt天堂

做毕设需要做目标识别的内容&#xff0c;需要GPU进行训练&#xff0c;参考了很多装Cuda的博客和教程&#xff0c;也大致看了一下官方的安装文档&#xff0c;经过了三个月断断续续的摸索&#xff0c;终于把实验室的电脑和自己的电脑成功装上了cuda8.0版本&#xff0c;并在后续装…...