搜索与图论(acwing算法基础)
文章目录
- DFS
- 排列数字
- n皇后
- BFS
- 走迷宫
- 拓扑序列
- 单链表
- 树与图的深度优先搜索
- 模拟队列
- 有向图的拓扑序列
- bellman-ford
- 有边数限制的最短路
- spfa
- spfa求最短路
- spfa判断负环
- Floyd
- Floyd求最短路
- Prim
- Prim算法求最小生成树
- Kruskal
- Kruskal算法求最小生成树
- 染色法判定二分图
- 染色法判定二分图
DFS
排列数字
#include<iostream>
using namespace std;
int n ;
int a[10];
bool s[10];
void dfs(int u)
{if(u == n){for(int i = 0 ; i <n ; i++) cout << a[i] << " " ;cout << endl ;return;}for(int i = 1; i <= n ; i++){if(!s[i]){a[u] = i;s[i] = true ;dfs(u+1);a[u] = 0 ;s[i] = false;}}}
int main()
{cin >> n ;dfs(0);return 0;
}
n皇后
#include<iostream>
using namespace std;
const int N = 20 ;
char g[N][N] ;
bool c[N], x[N] , y[N];
int n , m ;
void dfs(int u)
{if(u == n){for(int i = 0 ; i < n; i++) cout << g[i] << endl;cout << endl;return ;}for(int i = 0 ; i < n ; i++){if(!c[i] && !x[u+i] && !y[u-i+n]){c[i] = x[u+i] = y[u-i+n] = true ;g[u][i] = 'Q';dfs(u+1);g[u][i] = '.';c[i] = x[u+i] = y[u-i+n] = false ;}}
}
int main()
{cin >> n;for(int i = 0 ; i < n ; i++)for(int j = 0 ; j < n ; j++)g[i][j] = '.' ;dfs(0); return 0 ;
}
BFS
走迷宫
#include<iostream>
#include<cstring>
using namespace std;
typedef pair<int,int> PII ;
const int N = 110 ;
PII q[N * N];
int f[N][N] , d[N][N];
int n , m ;
int dx[] = {0,1,0,-1} , dy[] = {1,0,-1,0} ;
int bfs()
{memset(d , -1 , sizeof d);d[1][1] = 0 ;q[0] = {1,1};int hh = 0 , tt = 0 ;while(hh <= tt){auto t = q[hh++] ;for(int i = 0 ; i < 4 ; i++){int x = t.first + dx[i] , y = t.second + dy[i] ;if(x<=n &&x>0 && y<=m && y>0 && d[x][y] == -1 && f[x][y] == 0){q[++tt] = {x,y};d[x][y] = d[t.first][t.second] + 1 ;}}}return d[n][m];
}
int main()
{cin >> n >> m ;for(int i = 1 ; i <= n ; i++)for(int j = 1 ; j <= m ; j++)cin >> f[i][j];cout << bfs();return 0;
}
拓扑序列
单链表
点击跳转至例题
idx存的是指针
树与图的深度优先搜索
树的重心
每个节点都是一个单链表
模拟队列
hh = 0 , tt = -1
有向图的拓扑序列
都是从前指向后,即有向无环图(不能有环)
所有入度为0的点,都能排在前面的位置
删掉t->j的边,仅仅是j的入度减一,当j的入度为0的时候,放入队列
#include<iostream>
#include<cstring>
using namespace std;
const int N = 1e5 + 10;
int n , m ;
int e[N] , h[N] , ne[N] , idx;
int d[N] , q[N];
void add(int a , int b)
{e[idx] = b , ne[idx] = h[a] , h[a] = idx++;
}
bool topool()
{int hh = 0 , tt = -1 ;for(int i = 1; i <= n ; i++)if(!d[i]) q[++tt] = i ;while(hh <= tt){int t = q[hh++];for(int i = h[t] ; i != -1 ; i = ne[i]){int j = e[i]; d[j] -- ;if(d[j] == 0) q[++tt] = j ;}}return tt == n - 1;
}
int main()
{cin >> n >> m ;memset(h , -1 , sizeof h) ;for(int i = 0 ; i < m ; i++){int x,y;cin >> x >> y;add(x,y);d[y]++;}if(topool()){for(int i = 0 ; i < n ; i++) cout << q[i] << " " ;}else cout << -1 ;return 0;
}
bellman-ford
有边数限制的最短路
spfa
spfa求最短路
spfa判断负环
Floyd
Floyd求最短路
Prim
Prim算法求最小生成树
Kruskal
Kruskal算法求最小生成树
染色法判定二分图
染色法判定二分图
相关文章:

搜索与图论(acwing算法基础)
文章目录 DFS排列数字n皇后 BFS走迷宫 拓扑序列单链表树与图的深度优先搜索模拟队列有向图的拓扑序列 bellman-ford有边数限制的最短路 spfaspfa求最短路spfa判断负环 FloydFloyd求最短路 PrimPrim算法求最小生成树 KruskalKruskal算法求最小生成树 染色法判定二分图染色法判定…...

【数据结构】何为数据结构。
🚩 WRITE IN FRONT 🚩 🔎 介绍:"謓泽"正在路上朝着"攻城狮"方向"前进四" 🔎🏅 荣誉:2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4、2021|2022博客之星T…...

【P57】JMeter 保存响应到文件(Save Responses to a file)
文章目录 一、保存响应到文件(Save Responses to a file)参数说明二、准备工作三、测试计划设计 一、保存响应到文件(Save Responses to a file)参数说明 可以将结果树保存到文件 使用场景:当结果太大,使…...

Visual Studio 2022 v17.6 正式发布
Visual Studio 17.6 正式发布,这个最新版本提供了一系列强大的工具和功能,旨在使你能够制作出最先进的应用程序。 提高生产力 通过 Visual Studio 2022,目标是帮助你在更短的时间内完成 IDE 内的所有开发任务,在这个版本中&…...
std::chrono时间处理
std::chrono是C11引入的标准库,用于时间的计算和处理。它按照ISO8601标准定义了多个时间类,例如:duration(持续时间)、time_point(时间点)和clock(时钟)。以下是一些常见…...

ieda codeformatV2.xml
ieda codeformatV2.xml 目录概述需求: 设计思路实现思路分析1.codeformatV22.codeformatV23.codeformatV24.codeformatV25.数据处理器 拓展实现 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&…...
Hbase
java客户端 导入maven依赖 XML<dependencies> <dependency> <groupId>org.apache.zookeeper</groupId> <artifactId>zookeeper</artifactId> <version>3.4.6</version> </dependency>…...

[golang 微服务] 5. 微服务服务发现介绍,安装以及consul的使用,Consul集群
一.服务发现介绍 引入 上一节讲解了使用 gRPC创建微服务,客户端的一个接口可能需要调用 N个服务,而不同服务可能存在 不同的服务器,这时,客户端就必须知道所有服务的 网络位置(ipport),来进行连接服务器操作,如下图所示: 以往的做…...

【数据结构】哈希应用
目录 一、位图 1、位图概念 2、位图实现 2.1、位图结构 2.2、比特位置1 2.3、比特位置0 2.4、检测位图中比特位 3、位图例题 3.1、找到只出现一次的整数 3.2、找到两个文件交集 3.3、找到出现次数不超过2次的所有整数 二、布隆过滤器 1、布隆过滤器提出 2、布隆过…...

【 Python 全栈开发 - WEB开发篇 - 31 】where条件查询
文章目录 一、where条件查询1.关系运算符查询2.IN关键字查询3.BETWEEN AND关键字查询4.空值查询5.AND关键字查询6.OR关键字查询7.LIKE关键字查询普通字符串含有%通配的字符串含有_通配的字符串 一、where条件查询 MySQL 的 where 条件查询是指在查询数据时,通过 wh…...

Android系统的Ashmem匿名共享内存子系统分析(5)- 实现共享的原理
声明 其实对于Android系统的Ashmem匿名共享内存系统早就有分析的想法,记得2019年6、7月份Mr.Deng离职期间约定一起对其进行研究的,但因为我个人问题没能实施这个计划,留下些许遗憾…文中参考了很多书籍及博客内容,可能涉及的比较…...

谈一谈冷门的C语言爬虫
C语言可以用来编写爬虫程序,但是相对于其他编程语言,C语言的爬虫开发可能会更加复杂和繁琐。因为C语言本身并没有提供现成的爬虫框架和库,需要自己编写网络请求、HTML解析等功能。 不过,如果你对C语言比较熟悉,也可以…...

基于状态的维护(CBM)如何推动设备效率提高?
基于状态的维护(Condition-Based Maintenance,CBM)是一种先进的维护策略,通过实时监测和分析设备的状态数据,预测设备故障并采取相应的维护措施。CBM基于数据驱动的方法,能够提高设备的可用性、降低维修成本…...

DC LAB8SDC约束四种时序路径分析
DC LAB 1.启动DC2.读入设计3. 查看所有违例的约束报告3.1 report_constraint -all_violators (alias rc)3.2 view report_constraint -all_violators -verbose -significant_digits 4 (打印详细报告) 4.查看时序报告 report_timing -significant_digits 45. 约束组合逻辑(adr_i…...

学生考试作弊检测系统 yolov8
学生考试作弊检测系统采用yolov8网络模型人工智能技术,学生考试作弊检测系统过在考场中安装监控设备,对学生的作弊行为进行实时监测。当学生出现作弊行为时,学生考试作弊检测系统将自动识别并记录信息。YOLOv8 算法的核心特性和改动可以归结为…...
【基于容器的部署、扩展和管理】 3.2 基于容器的应用程序部署和升级
往期回顾: 第一章:【云原生概念和技术】 第二章:【容器化应用程序设计和开发】 第三章:【3.1 容器编排系统和Kubernetes集群的构建】 3.2 基于容器的应用程序部署和升级 3.2 基于容器的应用程序部署和升级 3.2 基于容器的应用程…...

Jmeter 实现 grpc服务 压测
一、Jmeter安装与配置 网上有很多安装与配置文章,在此不做赘述 二、Jmeter gRPC Request 插件安装 插件下载地址:JMeter Plugins :: JMeter-Plugins.org 将下载文件解压后放到Jmeter安装目录下 /lib/ext 然后在终端输入Jmeter即可打开 Jmeter GUI界面…...

深入源码分析RecyclerView缓存复用原理
文章目录 前言四级缓存 源码分析缓存一级缓存(mChangedScrap和mChangedScrap)二级缓存(mCachedViews)三级缓存(ViewCacheExtension)四级缓存(mRecyclerPool)缓存池mRecyclerPool结构…...

内网隧道代理技术(一)之内网隧道代理概述
内网隧道代理技术 内网转发 在渗透测试中,当我们获得了外网服务器(如web服务器,ftp服务器,mali服务器等等)的一定权限后发现这台服务器可以直接或者间接的访问内网。此时渗透测试进入后渗透阶段,一般情况…...
设计图形用户界面的原则
1) 一般性原则:界面要具有一致性、常用操作要有快捷方式、 提供简单的错误处理、对操作人员的重要操作要有信息反馈、操作可 逆、设计良好的联机帮助、合理划分并高效地使用显示屏、保证信息 显示方式与数据输入方式的协调一致 2) 颜色的使用:颜色…...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...

抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...