python中的.nc文件处理 | 04 利用矢量边界提取NC数据
利用矢量边界提取.nc数据
import osimport numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import seaborn as sns
import geopandas as gpd
import earthpy as et
import xarray as xr
# .nc文件的空间切片包
import regionmask# 绘图选项
sns.set(font_scale=1.3)
sns.set_style("white")
读取数据
data_path_monthly='http://thredds.northwestknowledge.net:8080/thredds/dodsC/agg_macav2metdata_tasmax_BNU-ESM_r1i1p1_rcp45_2006_2099_CONUS_monthly.nc'with xr.open_dataset(data_path_monthly) as file_nc:monthly_forecast_temp_xr=file_ncmonthly_forecast_temp_xr
读取感兴趣区的Shapefile文件
# 下载数据
# et.data.get_data(
# url="https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/50m/cultural/ne_50m_admin_1_states_provinces_lakes.zip")# 读取.shp文件
states_path = "ne_50m_admin_1_states_provinces_lakes"
states_path = os.path.join(states_path,"ne_50m_admin_1_states_provinces_lakes.shp"
)states_gdf=gpd.read_file(states_path)
states_gdf.head()
筛选出California州范围
cali_aoi=states_gdf[states_gdf.name=="California"]
# 获取其外包络矩形坐标
cali_aoi.total_bounds
array([-124.37165376, 32.53336527, -114.12501824, 42.00076797])
根据外包络矩形经纬度对nc数据进行切片
- 利用
sel()
函数
# 获取外包络矩形的左下角和右上角经纬度坐标
aoi_lat = [float(cali_aoi.total_bounds[1]), float(cali_aoi.total_bounds[3])]
aoi_lon = [float(cali_aoi.total_bounds[0]), float(cali_aoi.total_bounds[2])]
print(aoi_lat, aoi_lon)
# 将坐标转换为标准经度,即去掉正负号
aoi_lon[0] = aoi_lon[0] + 360
aoi_lon[1] = aoi_lon[1] + 360
print(aoi_lon)
[32.533365269889316, 42.00076797479207] [-124.3716537616361, -114.12501823892204]
[235.62834623836392, 245.87498176107795]
# 根据指定的时间和空间范围进行切片
start_date = "2010-01-15"
end_date = "2010-02-15"two_months_cali = monthly_forecast_temp_xr["air_temperature"].sel(time=slice(start_date, end_date),lon=slice(aoi_lon[0], aoi_lon[1]),lat=slice(aoi_lat[0], aoi_lat[1]))
two_months_cali
# 绘制切片数据分布的直方图
two_months_cali.plot()
plt.show()
# 绘制切片数据的空间分布
two_months_cali.plot(col='time',col_wrap=1)
plt.show()
# 若不指定时间范围
cali_ts = monthly_forecast_temp_xr["air_temperature"].sel(lon=slice(aoi_lon[0], aoi_lon[1]),lat=slice(aoi_lat[0], aoi_lat[1]))
cali_ts
提取每个点的每年的最高气温
cali_annual_max=cali_ts.groupby('time.year').max(skipna=True)
cali_annual_max
提取每年的最高气温
cali_annual_max_val=cali_annual_max.groupby('year').max(["lat","lon"])
cali_annual_max_val
绘制每年的最高温变化图
f,ax=plt.subplots(figsize=(12,6))
cali_annual_max_val.plot.line(hue="lat",marker="o",ax=ax,color="grey",markerfacecolor="purple",markeredgecolor="purple")
ax.set(title="Annual Max Temperature (K) in California")
plt.show()
使用Shapefile对nc文件进行切片
在上述的操作中,使用外包络矩形的坐标对nc数据进行了切片,但有时我们希望能得到不规则边界的数据,此时需要使用到regionmask
包创建掩膜
f,ax=plt.subplots()
cali_aoi.plot(ax=ax)
ax.set(title="california AOI Subset")plt.show()
cali_aoi
根据GeoPandasDataFrame生成掩膜
cali_mask=regionmask.mask_3D_geopandas(cali_aoi,monthly_forecast_temp_xr.lon,monthly_forecast_temp_xr.lat)
cali_mask
根据时间和掩膜对数据进行切片
two_months=monthly_forecast_temp_xr.sel(time=slice("2099-10-25","2099-12-15"))two_months=two_months.where(cali_mask)
two_months
绘制掩膜结果
two_months["air_temperature"].plot(col='time',col_wrap=1,figsize=(10, 10))
plt.show()
可以看到此时图中显示范围较大,可以通过设置经纬度进一步切片
two_months_masked = monthly_forecast_temp_xr["air_temperature"].sel(time=slice('2099-10-25','2099-12-15'),lon=slice(aoi_lon[0],aoi_lon[1]),lat=slice(aoi_lat[0],aoi_lat[1])).where(cali_mask)
two_months_masked.dims
('time', 'lat', 'lon', 'region')
two_months_masked.plot(col='time', col_wrap=1)
plt.show()
同时对多个区域进行切片
# 选取多个州
cali_or_wash_nev = states_gdf[states_gdf.name.isin(["California", "Oregon", "Washington", "Nevada"])]
cali_or_wash_nev.plot()
plt.show()
# 根据多个州的范围进行掩膜的生成
west_mask = regionmask.mask_3D_geopandas(cali_or_wash_nev,monthly_forecast_temp_xr.lon,monthly_forecast_temp_xr.lat)
west_mask
帮助生成多个mask的函数
def get_aoi(shp, world=True):"""Takes a geopandas object and converts it to a lat/ lonextent Parameters-----------shp : geopandas objectworld : booleanReturns-------Dictionary of lat and lon spatial bounds"""lon_lat = {}# Get lat min, maxaoi_lat = [float(shp.total_bounds[1]), float(shp.total_bounds[3])]aoi_lon = [float(shp.total_bounds[0]), float(shp.total_bounds[2])]if world:aoi_lon[0] = aoi_lon[0] + 360aoi_lon[1] = aoi_lon[1] + 360lon_lat["lon"] = aoi_lonlon_lat["lat"] = aoi_latreturn lon_latwest_bounds = get_aoi(cali_or_wash_nev)
# 设定提取的起止时间
start_date = "2010-01-15"
end_date = "2010-02-15"# Subset
two_months_west_coast = monthly_forecast_temp_xr["air_temperature"].sel(time=slice(start_date, end_date),lon=slice(west_bounds["lon"][0], west_bounds["lon"][1]),lat=slice(west_bounds["lat"][0], west_bounds["lat"][1]))
two_months_west_coast
two_months_west_coast.plot(col="region",row="time",sharey=False, sharex=False)
plt.show()
计算每个区域的温度均值
summary = two_months_west_coast.groupby("time").mean(["lat", "lon"])
summary.to_dataframe()
本节完整代码
# 提取geopandas对象的外包络矩形经纬度
def get_aoi(shp, world=True):"""Takes a geopandas object and converts it to a lat/ lonextent """lon_lat = {}# Get lat min, maxaoi_lat = [float(shp.total_bounds[1]), float(shp.total_bounds[3])]aoi_lon = [float(shp.total_bounds[0]), float(shp.total_bounds[2])]# Handle the 0-360 lon valuesif world:aoi_lon[0] = aoi_lon[0] + 360aoi_lon[1] = aoi_lon[1] + 360lon_lat["lon"] = aoi_lonlon_lat["lat"] = aoi_latreturn lon_lat
# 本节完整代码# 读取矢量数据
states_path = "ne_50m_admin_1_states_provinces_lakes"
states_path = os.path.join(states_path, "ne_50m_admin_1_states_provinces_lakes.shp")states_gdf = gpd.read_file(states_path)# 读取nc数据
data_path_monthly = 'http://thredds.northwestknowledge.net:8080/thredds/dodsC/agg_macav2metdata_tasmax_BNU-ESM_r1i1p1_rcp45_2006_2099_CONUS_monthly.nc'
with xr.open_dataset(data_path_monthly) as file_nc:monthly_forecast_temp_xr = file_nc# 数据对象
monthly_forecast_temp_xr# 将geopandas对象转换成掩膜
states_gdf["name"]cali_or_wash_nev = states_gdf[states_gdf.name.isin(["California", "Oregon", "Washington", "Nevada"])]west_mask = regionmask.mask_3D_geopandas(cali_or_wash_nev,monthly_forecast_temp_xr.lon,monthly_forecast_temp_xr.lat)
west_mask
west_bounds = get_aoi(cali_or_wash_nev)# 根据时间、掩膜范围对数据进行切片 .sel().where()
start_date = "2010-01-15"
end_date = "2020-02-15"two_months_west_coast = monthly_forecast_temp_xr["air_temperature"].sel(time=slice(start_date, end_date),lon=slice(west_bounds["lon"][0], west_bounds["lon"][1]),lat=slice(west_bounds["lat"][0], west_bounds["lat"][1])).where(west_mask)# 输出切片数据
two_months_west_coast# 直方图绘制
two_months_west_coast.plot()
plt.show()
# 绘制每个区域的变化
regional_summary = two_months_west_coast.groupby("region").mean(["lat", "lon"])
regional_summary.plot(col="region",marker="o",color="grey",markerfacecolor="purple",markeredgecolor="purple",col_wrap=2)
plt.show()
# 转换为dataframe
two_months_west_coast.groupby("region").mean(["lat", "lon"]).to_dataframe()
参考链接:
https://www.earthdatascience.org/courses/use-data-open-source-python/hierarchical-data-formats-hdf/summarize-climate-data-by-season/
https://gitee.com/jiangroubao/learning/tree/master/NetCDF4
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yWEE3qlj-1676603621866)(null)]
相关文章:
python中的.nc文件处理 | 04 利用矢量边界提取NC数据
利用矢量边界提取.nc数据 import osimport numpy as np import pandas as pd import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature import seaborn as sns import geopandas as gpd import earthpy as et import xarray as xr # …...
使用 PyNeuraLogic 超越 Transformers
展示神经符号编程的力量neuro-symbolic1. 简介 在过去的几年里,我们看到了基于 Transformer 的模型的兴起,并在自然语言处理或计算机视觉等许多领域取得了成功的应用。在本文[1]中,我们将探索一种简洁、可解释和可扩展的方式来表达深度学习模…...
微信点金计划(服务商角度)
时间:2023/2/17 背景:微信在推出点金计划后,原本window.WeixinJSBridge.invoke方法的回调失效了,需要在微信支付服务商平台|平台开放更多能力,与服务商一起成长这里进行配置,配置流程跟着官方给…...
2023年美赛 MCM B题 重新构想马赛马拉岛
背景肯尼亚的野生动物保护区最初主要是为了保护野生动物和其他自然资源。肯尼亚议会于2013 年通过了《野生动物保护和管理法》,以提供更公平的资源共享,并允许进行替代的、以社 区为基础的管理工作[1].此后,肯尼亚增加了修正案,以…...
指标体系的应用与搭建
一、指标体系的介绍 体系泛指一定范围内同类事物按照一定的顺序或内在联系而组成的整体。指标体系也一样,指的是不同指标按照一定的顺序及内部联系而组成的整体。此外,在指标体系中,除了以应用为出发点搭建,还会加入使用指南&…...
固态继电器的五大优势
固态继电器的优点和五个关键优势,现代电气控制系统因二极管、晶体管和晶闸管等固态器件的发明而得到极大的增强。对于加热器和电机等大负载设备,固态继电器可能比传统的机械继电器具有巨大的优势。 虽然并非适用于所有情况,但它们具有许多吸引…...
特征检测之HOG特征算法详解及Opencv接口使用
1. HOG特征简介 特征描述符是图像或图像补丁的表示形式,它通过提取有用信息并丢弃无关信息来简化图像。 通常,特征描述符将大小W x H x 3(通道)的图像转换为长度为n的特征向量/数组。对于 HOG 特征描述符,输入图像的…...
一款好的低代码开发平台应该是什么样?
一款好的低代码开发平台应该是什么样? 以企业级应用构建来讲,完成一个应用复杂度随着技术的进步、需求的细化、业务要求的变化并不是逐渐降低,而是逐渐提升。用户想要有更好的体验,复杂度更是成倍提升。 基于此,低代码…...
基于Spring cloud搭建oauth2
1,OAuth2.0简介 OAuth(开发授权)是一个开放标准,允许用户授权第三方应用访问他们存储在另外的服务提供者上的信息,而不需要将用户名和密码提供给第三方应用或分享他们数据的所有内容。 OAuth2.0是OAuth的延续…...
实现一个小程序分享图 wxml2canvas
我们经常会遇上动态生成海报的需求,而在小程序中,生成图片非Canvas莫属。但是在实际工作当中,为了追求效率,我们会不可避免地去使用一些JS插件,而 wxml-to-canvas 就是一款官方推荐且非常优秀的插件,它可以…...
基于matlab设计x波段机载SAR系统
一、前言此示例说明如何设计在 X 波段工作的合成孔径雷达 (SAR) 传感器并计算传感器参数。SAR利用雷达天线在目标区域上的运动来提供目标区域的图像。当SAR平台在目标区域上空行进时,当脉冲从雷达天线发送和接收时,会产生合成孔径…...
WPF学习:Slider — 冒泡显示值
想做一个下图所示的Slider,以冒泡的方式显示其Value值,该怎么做呢? 功能要求,当鼠标放在滑块上的时候,冒“泡”显示值;当滑块移动的时候,“泡”跟随移动。 看似简单的功能,但要完美…...
Vue实战第4章:主页设计之中部内容设计
前言 本篇在讲什么 接上篇文章,我们制作了一个自定义的网页导航栏,本篇文章我们简单制作一个内容页 仅介绍简单的应用,仅供参考 本篇适合什么 适合初学Vue的小白 适合想要自己搭建网站的新手 适合没有接触过vue-router的前端程序 本篇…...
数据结构代码总结(C语言实现)
目录如何应对数据结构的代码题?采取的学习流程①首先对C语言的语法的熟悉②学习掌握基本代码的写法,做到熟练2.1插入排序2.2快速排序2.3二分查找2.4树的遍历③跟着网上视频开始熟悉对一些问题的解答④结合真题的代码,寻找其中的结题规律如何应…...
zookeeper 复习 ---- chapter04
zookeeper 复习 ---- chapter04zookeeper 的精髓是什么? 1:它有四个节点类型 持久无序的节点 临时无序的节点 持久有序的节点 临时有序的节点 临时的节点的特征:当客户端和服务器端断开连接,当前客户端创建的节点被服务器端自动删…...
thinkphp6.0连接MYSQL
目录8.连接多个数据库7.多级控制器不存在6.分页5.非法请求4.关于路由**3.初体验页面****2.加入fileheader添加注释****1.配置mysql0. 官方开发手册一些网址 http://127.0.0.1:8000/index 原桌面 http://127.0.0.1:8000/hello/fsh hello,fsh(index中hello方法&#x…...
商家必读!超店有数分享,tiktok达人营销变现如何更快一步?
近几年来,“粉丝经济”发展越来越迅猛,“网红带货”已经成为了一种营销的方式。这种方式让商家能基于达人的影响下迅速抢占自己的私域流量池。消费者会基于对达人的信任,购买达人推荐的产品。达人效应可以助力品牌走出营销困境。如果商家想要…...
操作系统(day11)--快表,两级页表
具有快表的地址变换机构 时间局限性:会有大量连续的指令需要访问同一个内存块的数据的情况(程序中的循环) 空间局限性:一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也很有可能被访问。…...
预告| 亮点抢先看!第四届OpenI/O启智开发者大会主论坛24日启幕!
2023年2月24日至25日,第四届OpenI/O启智开发者大会将在深圳隆重举行。“算网筑基、开源启智、AI赋能”作为今年大会的主题,吸引了全球业界关注的目光。大会集结中国算力网资源基座、开源社区治理及AI开源生态建设、国家级开放创新应用平台、NLP大模型等前…...
猪齿鱼(Choerodon UI )的通用提交的封装 —— 两种方案,A.使用dataSet的自身的submit,B.使用axios.post来提交
submit组件(otherSubmit/axiosSubmit) 一、背景与简介 1、首先我们申请表提交,分为【保存】提交与【其他】提交; 1.1【保存】提交,要求表单必须要有变更,DataToJSON默认为dirty(只转换变更的…...
CISCN(Web Ezpentest)GC、序列化、case when
目录 REGEXP的一个点(正则) like(默认不区分大小写) 当禁用了空格 regexp,like的区分大小写的使用方法 [CISCN 2022 初赛]ezpentest 卡点 2022 HFCTF babysql 最近又学到了一道新知识,case when的错…...
OSG三维渲染引擎编程学习之五十七:“第六章:OSG场景工作机制” 之 “6.1 OSG访问器”
目录 第六章 OSG场景工作机制 6.1 OSG访问器 6.1.1 访问器模式 6.1.2 osg::NodeVisitor 6.1.3 访问器示例...
Python3 输入和输出实例及演示
在前面几个章节中,我们其实已经接触了 Python 的输入输出的功能。本章节我们将具体介绍 Python 的输入输出。 输出格式美化 Python两种输出值的方式: 表达式语句和 print() 函数。 第3种方式是使用文件对象的 write() 方法,标准输出文件可以用 sys.std…...
召回-回忆录(持续更新)
0.召回方法 词召回 swing、itemCF 缺点: 有冷启动问题不是全局召回,冷门活动难以得到召回结果容易召回过多的头部热门活动 向量召回 参考文献: 经典推荐算法学习(七)| Graph Embedding技术学习 | 从DeepWalk到No…...
1243. 糖果/状态压缩dp【AcWing】
1243. 糖果 糖果店的老板一共有 M种口味的糖果出售。 为了方便描述,我们将 M种口味编号 1∼M。 小明希望能品尝到所有口味的糖果。 遗憾的是老板并不单独出售糖果,而是 K颗一包整包出售。 幸好糖果包装上注明了其中 K颗糖果的口味,所以小…...
【Spring Cloud Alibaba】001-单体架构与微服务架构
【Spring Cloud Alibaba】001-单体架构与微服务 文章目录【Spring Cloud Alibaba】001-单体架构与微服务一、单体架构1、单体应用与单体架构2、单体应用架构图3、单体架构优缺点优点缺点二、微服务1、微服务的“定义”2、微服务的特性3、微服务架构图4、微服务的优缺点优点缺点…...
Renderer 使用材质分析:materials、sharedMaterials 及 MaterialPropertyBlock
一、materials 与 sharedMaterials 1.1 使用上的区别与差异 Unity 开发时,在 C# 中通过 Renderer 取材质操作是非常常见的操作,Renderer 有两种常规获取材质的方式: sharedMaterials:可以理解这个就是原始材质,所有使…...
java学习----网络编程
网络编程入门 网络编程概述 计算机网络 计算机网络是指地理位置不同的具有独立功能的计算机及其外部设备,通过通信线路连接起来,在网络操作系统,网络管理软件及网络通信协议的管理协调下,实现资源共享和信息传递的计算机系统…...
这些「误区」99%的研发都踩过
意识不到误区的存在最为离谱; 01生活中,职场上,游戏里,都少不了正面对喷过:意识太差; 在个人的认知中意识即思维,意识太差即思维中存在的误区比较多; 每个人或多或少都存在思维上的…...
Bi系统跟数据中台的区别是什么?
随着数据时代的发展,BI分析是当今数据时代必不可少的能力之一。BI系统通过系统化产品化的方法,能够大幅降低数据的获取成本、提升数据使用效率。同时借助可视化、交互式的操作,可以高效支持业务的分析及发展。 BI如此火热,随之而…...
免费云主机网址/怎么seo快速排名
合并分支代码,简单操作: 1、切换到master主干代码 2、到git repositories 视图,点击需要合并的分支,例如v1.1.9 点击merge 进行合并 3、然后push to Upstream 进行提交 还有回退上个版本代码Reset 转载于:https://www.cnblogs.com…...
番禺做网站设计/福建seo排名培训
利用mybatis generator反向生成数据库对应的model实体时,报如下错误:原因是: 配置文件 generatorConfig.xml 里面的context的子元素必须按照它给出的顺序。 我这里面报错是因为match 报错...
平阳网站制作/百度关键词搜索
自动化测试面试什么是自动化测试自动化测试分为哪几类什么时候会用到自动化测试自动化过程涉及哪些步骤简述你了解的延迟等待的方式如何设计出一个高质量的自动化脚本良好的自动化测试工具的特征是什么简述你知道的自动化测试工具QTPAppiumSeleniumJenkins手动测试的缺点是什么…...
乡镇政府可以做网站认/刷排名seo
一、条件断点循环中经常用到这个技巧,比如:遍历1个大List的过程中,想让断点停在某个特定值。参考上图,在断点的位置,右击断点旁边的小红点,会出来一个界面,在Condition这里填入断点条件即可&…...
网推所和传统律所比较/搜索引擎优化方法有哪几种
高德地图 Android SDK 能够为 Android 应用开发人员提供互动的、功能丰富的 Android 手机地图。 将地图显示功能与搜索服务、定位服务分别封装为三个类库。每一个类库不相互依赖,用户能够分开使用。提供 2D(栅格)和3D(矢量&#x…...
怎么做网站开发/常州网络推广seo
通过使用数据库服务器端的sqlnet.ora文件可以实现禁止指定IP主机访问数据库的功能,这对于提升数据库的安全性有很大的帮助,与此同时,这个技术为我们管理和约束数据库访问控制提供了有效的手段。下面是实现这个目的的具体步骤仅供参考…...