当前位置: 首页 > news >正文

个人网站制作流程/深圳推广公司推荐

个人网站制作流程,深圳推广公司推荐,天津手机版建站系统价格,dedecms对比wordpress文章目录 0 前言1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习图像风格迁移 - opencv python 该项目较为新颖,适合作为竞赛课题…

文章目录

  • 0 前言
  • 1 VGG网络
  • 2 风格迁移
  • 3 内容损失
  • 4 风格损失
  • 5 主代码实现
  • 6 迁移模型实现
  • 7 效果展示
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习图像风格迁移 - opencv python

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:

在这里插入图片描述
原图片经过一系列的特征变换,具有了新的纹理特征,这就叫做风格迁移。

1 VGG网络

在实现风格迁移之前,需要先简单了解一下VGG网络(由于VGG网络不断使用卷积提取特征的网络结构和准确的图像识别效率,在这里我们使用VGG网络来进行图像的风格迁移)。

在这里插入图片描述
如上图所示,从A-
E的每一列都表示了VGG网络的结构原理,其分别为:VGG-11,VGG-13,VGG-16,VGG-19,如下图,一副图片经过VGG-19网络结构可以最后得到一个分类结构。

在这里插入图片描述

2 风格迁移

对一副图像进行风格迁移,需要清楚的有两点。

  • 生成的图像需要具有原图片的内容特征
  • 生成的图像需要具有风格图片的纹理特征

根据这两点,可以确定,要想实现风格迁移,需要有两个loss值:
一个是生成图片的内容特征与原图的内容特征的loss,另一个是生成图片的纹理特征与风格图片的纹理特征的loss。

而对一张图片进行不同的特征(内容特征和纹理特征)提取,只需要使用不同的卷积结构进行训练即可以得到。这时我们需要用到两个神经网络。

再回到VGG网络上,VGG网络不断使用卷积层来提取特征,利用特征将物品进行分类,所以该网络中提取内容和纹理特征的参数都可以进行迁移使用。故需要将生成的图片经过VGG网络的特征提取,再分别针对内容和纹理进行特征的loss计算。

在这里插入图片描述
如图,假设初始化图像x(Input image)是一张随机图片,我们经过fw(image Transform Net)网络进行生成,生成图片y。
此时y需要和风格图片ys进行特征的计算得到一个loss_style,与内容图片yc进行特征的计算得到一个loss_content,假设loss=loss_style+loss_content,便可以对fw的网络参数进行训练。

现在就可以看网上很常见的一张图片了:

在这里插入图片描述
相较于我画的第一张图,这即对VGG内的loss求值过程进行了细化。

细化的结果可以分为两个方面:

  • (1)内容损失
  • (2)风格损失

3 内容损失

由于上图中使用的模型是VGG-16,那么即相当于在VGG-16的relu3-3处,对两张图片求得的特征进行计算求损失,计算的函数如下:

在这里插入图片描述

简言之,假设yc求得的特征矩阵是φ(y),生成图片求得的特征矩阵为φ(y^),且c=φ.channel,w=φ.weight,h=φ.height,则有:

在这里插入图片描述

代码实现:

def content_loss(content_img, rand_img):content_layers = [('relu3_3', 1.0)]content_loss = 0.0# 逐个取出衡量内容损失的vgg层名称及对应权重for layer_name, weight in content_layers:# 计算特征矩阵p = get_vgg(content_img, layer_name)x = get_vgg(rand_img, layer_name)# 长x宽xchannelM = p.shape[1] * p.shape[2] * p.shape[3]# 根据公式计算损失,并进行累加content_loss += (1.0 / M) * tf.reduce_sum(tf.pow(p - x, 2)) * weight# 将损失对层数取平均content_loss /= len(content_layers)return content_loss

4 风格损失

风格损失由多个特征一同计算,首先需要计算Gram Matrix

在这里插入图片描述
Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature
map中,每一个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字就代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像的大体风格。有了表示风格的Gram
Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。 故在计算损失的时候函数如下:

在这里插入图片描述
在实际使用时,该loss的层级一般选择由低到高的多个层,比如VGG16中的第2、4、7、10个卷积层,然后将每一层的style loss相加。

在这里插入图片描述
第三个部分不是必须的,被称为Total Variation
Loss。实际上是一个平滑项(一个正则化项),目的是使生成的图像在局部上尽可能平滑,而它的定义和马尔科夫随机场(MRF)中使用的平滑项非常相似。
其中yn+1是yn的相邻像素。

代码实现以上函数:

# 求gamm矩阵
def gram(x, size, deep):x = tf.reshape(x, (size, deep))g = tf.matmul(tf.transpose(x), x)return gdef style_loss(style_img, rand_img):style_layers = [('relu1_2', 0.25), ('relu2_2', 0.25), ('relu3_3', 0.25), ('reluv4_3', 0.25)]style_loss = 0.0# 逐个取出衡量风格损失的vgg层名称及对应权重for layer_name, weight in style_layers:# 计算特征矩阵a = get_vgg(style_img, layer_name)x = get_vgg(rand_img, layer_name)# 长x宽M = a.shape[1] * a.shape[2]N = a.shape[3]# 计算gram矩阵A = gram(a, M, N)G = gram(x, M, N)# 根据公式计算损失,并进行累加style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight# 将损失对层数取平均style_loss /= len(style_layers)return style_loss

5 主代码实现

代码实现主要分为4步:

  • 1、随机生成图片

  • 2、读取内容和风格图片

  • 3、计算总的loss

  • 4、训练修改生成图片的参数,使得loss最小

      * def main():# 生成图片rand_img = tf.Variable(random_img(WIGHT, HEIGHT), dtype=tf.float32)with tf.Session() as sess:content_img = cv2.imread('content.jpg')style_img = cv2.imread('style.jpg')# 计算loss值cost = ALPHA * content_loss(content_img, rand_img) + BETA * style_loss(style_img, rand_img)optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)sess.run(tf.global_variables_initializer())for step in range(TRAIN_STEPS):# 训练sess.run([optimizer,  rand_img])if step % 50 == 0:img = sess.run(rand_img)img = np.clip(img, 0, 255).astype(np.uint8)name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"cv2.imwrite(name, img)

    6 迁移模型实现

由于在进行loss值求解时,需要在多个网络层求得特征值,并根据特征值进行带权求和,所以需要根据已有的VGG网络,取其参数,重新建立VGG网络。
注意:在这里使用到的是VGG-19网络:

在重建的之前,首先应该下载Google已经训练好的VGG-19网络,以便提取出已经训练好的参数,在重建的VGG-19网络中重新利用。

在这里插入图片描述
下载得到.mat文件以后,便可以进行网络重建了。已知VGG-19网络的网络结构如上述图1中的E网络,则可以根据E网络的结构对网络重建,VGG-19网络:

在这里插入图片描述
进行重建即根据VGG-19模型的结构重新创建一个结构相同的神经网络,提取出已经训练好的参数作为新的网络的参数,设置为不可改变的常量即可。

def vgg19():layers=('conv1_1','relu1_1','conv1_2','relu1_2','pool1','conv2_1','relu2_1','conv2_2','relu2_2','pool2','conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3','conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4','conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5')vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')weights = vgg['layers'][0]network={}net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)network['input'] = netfor i,name in enumerate(layers):layer_type=name[:4]if layer_type=='conv':kernels = weights[i][0][0][0][0][0]bias = weights[i][0][0][0][0][1]conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)net=tf.nn.relu(conv + bias)elif layer_type=='pool':net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')network[name]=netreturn network

由于计算风格特征和内容特征时数据都不会改变,所以为了节省训练时间,在训练之前先计算出特征结果(该函数封装在以下代码get_neck()函数中)。

总的代码如下:

import tensorflow as tfimport numpy as npimport scipy.ioimport cv2import scipy.miscHEIGHT = 300WIGHT = 450LEARNING_RATE = 1.0NOISE = 0.5ALPHA = 1BETA = 500TRAIN_STEPS = 200OUTPUT_IMAGE = "D://python//img"STYLE_LAUERS = [('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)]CONTENT_LAYERS = [('conv4_2', 0.5), ('conv5_2',0.5)]def vgg19():layers=('conv1_1','relu1_1','conv1_2','relu1_2','pool1','conv2_1','relu2_1','conv2_2','relu2_2','pool2','conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3','conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4','conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5')vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')weights = vgg['layers'][0]network={}net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)network['input'] = netfor i,name in enumerate(layers):layer_type=name[:4]if layer_type=='conv':kernels = weights[i][0][0][0][0][0]bias = weights[i][0][0][0][0][1]conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)net=tf.nn.relu(conv + bias)elif layer_type=='pool':net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')network[name]=netreturn network# 求gamm矩阵def gram(x, size, deep):x = tf.reshape(x, (size, deep))g = tf.matmul(tf.transpose(x), x)return gdef style_loss(sess, style_neck, model):style_loss = 0.0for layer_name, weight in STYLE_LAUERS:# 计算特征矩阵a = style_neck[layer_name]x = model[layer_name]# 长x宽M = a.shape[1] * a.shape[2]N = a.shape[3]# 计算gram矩阵A = gram(a, M, N)G = gram(x, M, N)# 根据公式计算损失,并进行累加style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight# 将损失对层数取平均style_loss /= len(STYLE_LAUERS)return style_lossdef content_loss(sess, content_neck, model):content_loss = 0.0# 逐个取出衡量内容损失的vgg层名称及对应权重for layer_name, weight in CONTENT_LAYERS:# 计算特征矩阵p = content_neck[layer_name]x = model[layer_name]# 长x宽xchannelM = p.shape[1] * p.shape[2]N = p.shape[3]lss = 1.0 / (M * N)content_loss += lss * tf.reduce_sum(tf.pow(p - x, 2)) * weight# 根据公式计算损失,并进行累加# 将损失对层数取平均content_loss /= len(CONTENT_LAYERS)return content_lossdef random_img(height, weight, content_img):noise_image = np.random.uniform(-20, 20, [1, height, weight, 3])random_img = noise_image * NOISE + content_img * (1 - NOISE)return random_imgdef get_neck(sess, model, content_img, style_img):sess.run(tf.assign(model['input'], content_img))content_neck = {}for layer_name, weight in CONTENT_LAYERS:# 计算特征矩阵p = sess.run(model[layer_name])content_neck[layer_name] = psess.run(tf.assign(model['input'], style_img))style_content = {}for layer_name, weight in STYLE_LAUERS:# 计算特征矩阵a = sess.run(model[layer_name])style_content[layer_name] = areturn content_neck, style_contentdef main():model = vgg19()content_img = cv2.imread('D://a//content1.jpg')content_img = cv2.resize(content_img, (450, 300))content_img = np.reshape(content_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]style_img = cv2.imread('D://a//style1.jpg')style_img = cv2.resize(style_img, (450, 300))style_img = np.reshape(style_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]# 生成图片rand_img = random_img(HEIGHT, WIGHT, content_img)with tf.Session() as sess:# 计算loss值content_neck, style_neck = get_neck(sess, model, content_img, style_img)cost = ALPHA * content_loss(sess, content_neck, model) + BETA * style_loss(sess, style_neck, model)optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)sess.run(tf.global_variables_initializer())sess.run(tf.assign(model['input'], rand_img))for step in range(TRAIN_STEPS):print(step)# 训练sess.run(optimizer)if step % 10 == 0:img = sess.run(model['input'])img += [128, 128, 128]img = np.clip(img, 0, 255).astype(np.uint8)name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"img = img[0]cv2.imwrite(name, img)img = sess.run(model['input'])img += [128, 128, 128]img = np.clip(img, 0, 255).astype(np.uint8)cv2.imwrite("D://end.jpg", img[0])main()

7 效果展示

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

竞赛项目 深度学习图像风格迁移 - opencv python

文章目录 0 前言1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习图像风格迁移 - opencv python 该项目较为新颖,适合作为竞赛课题…...

​Windows dos文件夹与文件怎么创建与删除

在Windows操作系统中,你可以使用命令行工具(命令提示符或PowerShell)来创建和删除文件夹和文件。以下是创建和删除文件夹和文件的基本方法: 创建文件夹: 使用mkdir命令来创建文件夹(目录)。 m…...

JVM总结2

1.基本概念 java代码执行 代码编译class:javac 源文件通过编译器产生字节码文件,字节码文件通过jvm的解释器编译成机器上的机器码 装载class:ClassLoader执行class: 解释执行编译执行 client compilerserver compiler 内存管理…...

servlet三大类HttpSevlet,HttpServletRequest,HttpServletResponse介绍

一、HttpServlet HttpServlet类是一个被继承的方法,可以看做一个专门用来响应http请求的类,这个类的所有方法都是为响应http请求服务的,要对一个某个路径谁知http响应时,需要写一个类来继承HttpServlet类,并重写里面的…...

【雕爷学编程】Arduino动手做(12)---霍尔模块之霍尔磁感应声光报警器(磁控开关,接220V)

37款传感器与模块的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的&#x…...

认识 SQL

文章目录 1.简介2.组成3.工作原理4.五种子语言5.注释方式6.字符串表示方式参考文献 1.简介 SQL(Structured Query Language,结构化查询语言)是一种用于管理和操作关系型数据库的标准化查询语言。它是一种领域特定语言(DSL&#x…...

【剑指Offer 58】翻转单词顺序,Java解密。

LeetCode 剑指Offer 75道练习题 文章目录 剑指Offer:翻转单词顺序示例:限制:解题思路:剑指Offer:翻转单词顺序 【题目描述】 输入一个英文句子,翻转句子中单词的顺序,但单词内字符的顺序不变。为简单起见,标点符号和普通字母一样处理。例如输入字符串"I am a stu…...

微服务Ribbon-负载均衡原理

目录 一、LoadBalancerIntercepor 二、LoadBalancerClient 三、负载均衡策略IRule 四、总结 上一篇中,我们添加了LoadBalanced注解,即可实现负载均衡功能,这是什么原理呢? SpringCloud底层其实是利用了一个名为Ribbon的组件&…...

如何实现Vue的异步组件?如何在Vue中使用本地存储?什么是Vue的指令模块化?

1、如何实现Vue的异步组件&#xff1f; 在Vue中&#xff0c;可以使用异步组件来加载远程数据&#xff0c;或者在组件的生命周期中执行一些耗时操作。实现异步组件&#xff0c;需要使用Vue的异步组件和Vue的组件系统。 下面是一个基本的示例&#xff1a; <template><…...

《HeadFirst设计模式(第二版)》第六章代码——命令模式

代码文件目录&#xff1a; Command package Chapter6_CommandPattern.Command;/*** Author 竹心* Date 2023/8/6**/public interface Command {public void execute();public void undo();//撤销该指令 }CeilingFan package Chapter6_CommandPattern.ElectricAppliance;/*** …...

JS 原型与继承2

//***-、原型、原型链、构造函数 prototype、 proto_、constructor function Foo(){this.a1} var foo new Foo(); Object.getPrototypeOf(foo);//访问对象原型 效果等同于&#xff0c;foo. proto &#xff0c;只是更推荐使用 Es6的 Object.getPrototypeof()方式 // construct…...

账号登录相关的一点随笔

最后更新于2023年8月8日 14:25:32 JWT验证&#xff1a; 简单&#xff1a;一个token验证&#xff1b; 前端发来登录信息&#xff0c;后端验证通过后&#xff0c;将token发回前端&#xff1b; 复杂&#xff1a;Access Token Refresh Token验证&#xff1a; 将Access Token和R…...

常见的一些BUG

常见的一些BUG&#xff0c;但实际上在编写代码时&#xff0c;我们应该尽可能避免这些类型的错误&#xff1a; 变量名与函数名冲突&#xff1a; def main(): print("Hello, World!") main 5 print("The value of main is:", main) 函数参数传递错误&…...

ChatGPT在智能社交网络分析和关系挖掘中的应用如何?

智能社交网络分析和关系挖掘是当今信息时代中的重要研究领域&#xff0c;它们通过运用人工智能、机器学习和数据挖掘技术&#xff0c;从社交网络中提取有价值的信息&#xff0c;洞察用户之间的关系和行为模式。ChatGPT作为一种强大的自然语言处理模型&#xff0c;在智能社交网络…...

你不了解的Dictionary和ConcurrentDictionary

最近在做项目时&#xff0c;多线程中使用Dictionary的全局变量时&#xff0c;发现数据并没有存入到Dictionary中&#xff0c;但是程序也没有报错&#xff0c;经过自己的一番排查&#xff0c;发现Dictionary为非线程安全类型&#xff0c;因此我感觉数据没有写进去的原因是多线程…...

c++类模板,嵌套类模板,模板链表,动态数组

c类模板&#xff0c;嵌套类模板&#xff0c;模板链表&#xff0c;动态数组 一.类模板 1.类模板的书写 代码如下 template<typename T>//模板 class CTest {//类 public:T m_a;CTest(const T&a):m_a(a){}void fun1() {cout << typeid(m_a).name() << …...

【Flutter】【基础】CustomPaint 绘画功能,绘制各种图形(二)

CustomPaint 使用实例和代码&#xff1a; 1.canvas.drawColor 绘制背景颜色 class MyPainter1 extends CustomPainter {overridevoid paint(Canvas canvas, Size size) {//绘制背景颜色&#xff0c;整个UI 现在就是红色的canvas.drawColor(Colors.red, BlendMode.srcATop);}…...

YOLOv5修改注意力机制CBAM

直接上干货 CBAM注意力机制是由通道注意力机制&#xff08;channel&#xff09;和空间注意力机制&#xff08;spatial&#xff09;组成。 传统基于卷积神经网络的注意力机制更多的是关注对通道域的分析&#xff0c;局限于考虑特征图通道之间的作用关系。CBAM从 channel 和 sp…...

计算机网络 网络层 概述

...

算法练习--动态规划 相关

文章目录 走方格的方案 走方格的方案 请计算n*m的棋盘格子&#xff08;n为横向的格子数&#xff0c;m为竖向的格子数&#xff09;从棋盘左上角出发沿着边缘线从左上角走到右下角&#xff0c;总共有多少种走法&#xff0c;要求不能走回头路&#xff0c;即&#xff1a;只能往右和…...

JAVA volatile 关键字

volatile 是JAVA虚拟机提供的轻量级的同步机制&#xff0c;有三大特性 1、保证可见性 2、不保证原子性 3、禁止指令重排 JMM JAVA内存模型本身是一种抽象的概念并不真实存在 它描述的是一组规则或规范&#xff0c;提供这组规范定义了程序中各个变量&#xff08;包括实例变…...

[Leetcode] [Tutorial] 回溯

文章目录 46. 全排列Solution 78. 子集Solution 17. 电话号码的字母组合Solution 39. 组合总和Solution 22. 括号生成Solution 46. 全排列 给定一个不含重复数字的数组 nums &#xff0c;返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例&#xff1a; 输入&…...

STM32 CubeMX USB_MSC(存储设备U盘)

STM32 CubeMX STM32 CubeMX USB_MSC(存储设备U盘&#xff09; STM32 CubeMX前言 《使用内部Flash》——U盘一、STM32 CubeMX 设置USB时钟设置USB使能UBS功能选择FATFS功能 二、代码部分修改代码"usbd_storage_if.c"修改代码"user_diskio.c"main函数初始化插…...

湘大 XTU OJ 1214 A+B IV 题解:数位移动的本质+布尔变量标记+朴素模拟

一、链接 AB IV 二、题目 题目描述 小明喜欢做ab的算术&#xff0c;但是他经常忘记把末位对齐&#xff0c;再进行加&#xff0c;所以&#xff0c;经常会算错。 比如1213&#xff0c;他把12左移了1位&#xff0c;结果变成了133。 小明已经算了一些等式&#xff0c;请计算一下…...

以商业大数据技术助力数据合规流通体系建立,合合信息参编《数据经纪从业人员评价规范》团标

经国务院批准&#xff0c;由北京市人民政府、国家发展和改革委员会、工业和信息化部、商务部、国家互联网信息办公室、中国科学技术协会共同主办的2023 全球数字经济大会于近期隆重召开。由数交数据经纪&#xff08;深圳&#xff09;有限公司为主要发起单位&#xff0c;合合信息…...

【论文阅读】Deep Instance Segmentation With Automotive Radar Detection Points

基于汽车雷达检测点的深度实例分割 一个区别&#xff1a; automotive radar 汽车雷达 &#xff1a; 分辨率低&#xff0c;点云稀疏&#xff0c;语义上模糊&#xff0c;不适合直接使用用于密集LiDAR点开发的方法 &#xff1b; 返回的物体图像不如LIDAR精确&#xff0c;可以…...

易服客工作室:如何创建有用的内容日历

利用技巧和工具优化您的内容营销效率和效果。创建一个内容日历&#xff0c;您的整个团队都会从中受益&#xff01; 欢迎来到熙熙攘攘、瞬息万变的内容营销世界&#xff0c;在这里&#xff0c;截止日期到来的速度比喝咖啡的猎豹还要快。 现在&#xff0c;想象一下在没有地图、…...

Excel革命,基于电子表格开发的新工具,不是Access和Power Fx

深谙其道 在日常工作中&#xff0c;Excel是许多人不可或缺的办公工具。 是微软的旗下产品&#xff0c;属于Microsoft 365套件中的一部分&#xff0c;强大的数据处理和计算功能&#xff0c;被普遍应用在全球各行各业的人群当中&#xff0c;是一款强大且普及的电子表格软件。 于…...

“崩溃”漏洞会影响英特尔 CPU 的使用寿命,可能会泄露加密密钥等

对于 CPU 安全漏洞来说&#xff0c;本周是重要的一周。昨天&#xff0c;不同的安全研究人员发布了两个不同漏洞的详细信息&#xff0c;一个影响多代英特尔处理器&#xff0c;另一个影响最新的 AMD CPU。“ Downfall ”和“ Inception ”&#xff08;分别&#xff09;是不同的错…...

17.电话号码的字母组合(回溯)

目录 一、题目 二、代码 一、题目 17. 电话号码的字母组合 - 力扣&#xff08;LeetCode&#xff09; 二、代码 class Solution {const char*data[10]{"","","abc","def","ghi","jkl","mno","pq…...