2023国赛数学建模思路 - 案例:ID3-决策树分类算法
文章目录
- 0 赛题思路
- 1 算法介绍
- 2 FP树表示法
- 3 构建FP树
- 4 实现代码
- 建模资料
0 赛题思路
(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog
1 算法介绍
FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模式树算法,他与Apriori算法一样也是用来挖掘频繁项集的,不过不同的是,FP-Tree算法是Apriori算法的优化处理,他解决了Apriori算法在过程中会产生大量的候选集的问题,而FP-Tree算法则是发现频繁模式而不产生候选集。但是频繁模式挖掘出来后,产生关联规则的步骤还是和Apriori是一样的。
常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下。FPGrowth不同于Apriori的“试探”策略,算法只需扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩,效率较高。
FP代表频繁模式(Frequent Pattern) ,算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。
2 FP树表示法
FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。
一颗FP树如下图所示:
通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。
FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。
为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。
3 构建FP树
现在有如下数据:
FP-growth算法需要对原始训练集扫描两遍以构建FP树。
第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。
第二次扫描,构造FP树。
参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:
从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。
4 实现代码
def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDatdef createInitSet(dataSet):retDict = {}for trans in dataSet:fset = frozenset(trans)retDict.setdefault(fset, 0)retDict[fset] += 1return retDictclass treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValueself.count = numOccurself.nodeLink = Noneself.parent = parentNodeself.children = {}def inc(self, numOccur):self.count += numOccurdef disp(self, ind=1):print(' ' * ind, self.name, ' ', self.count)for child in self.children.values():child.disp(ind + 1)def createTree(dataSet, minSup=1):headerTable = {}#此一次遍历数据集, 记录每个数据项的支持度for trans in dataSet:for item in trans:headerTable[item] = headerTable.get(item, 0) + 1#根据最小支持度过滤lessThanMinsup = list(filter(lambda k:headerTable[k] < minSup, headerTable.keys()))for k in lessThanMinsup: del(headerTable[k])freqItemSet = set(headerTable.keys())#如果所有数据都不满足最小支持度,返回None, Noneif len(freqItemSet) == 0:return None, Nonefor k in headerTable:headerTable[k] = [headerTable[k], None]retTree = treeNode('φ', 1, None)#第二次遍历数据集,构建fp-treefor tranSet, count in dataSet.items():#根据最小支持度处理一条训练样本,key:样本中的一个样例,value:该样例的的全局支持度localD = {}for item in tranSet:if item in freqItemSet:localD[item] = headerTable[item][0]if len(localD) > 0:#根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] descorderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)]updateTree(orderedItems, retTree, headerTable, count)return retTree, headerTabledef updateTree(items, inTree, headerTable, count):if items[0] in inTree.children: # check if orderedItems[0] in retTree.childreninTree.children[items[0]].inc(count) # incrament countelse: # add items[0] to inTree.childreninTree.children[items[0]] = treeNode(items[0], count, inTree)if headerTable[items[0]][1] == None: # update header tableheaderTable[items[0]][1] = inTree.children[items[0]]else:updateHeader(headerTable[items[0]][1], inTree.children[items[0]])if len(items) > 1: # call updateTree() with remaining ordered itemsupdateTree(items[1:], inTree.children[items[0]], headerTable, count)def updateHeader(nodeToTest, targetNode): # this version does not use recursionwhile (nodeToTest.nodeLink != None): # Do not use recursion to traverse a linked list!nodeToTest = nodeToTest.nodeLinknodeToTest.nodeLink = targetNodesimpDat = loadSimpDat()
dictDat = createInitSet(simpDat)
myFPTree,myheader = createTree(dictDat, 3)
myFPTree.disp()
上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。
控制台信息:
建模资料
资料分享: 最强建模资料
相关文章:
2023国赛数学建模思路 - 案例:ID3-决策树分类算法
文章目录 0 赛题思路1 算法介绍2 FP树表示法3 构建FP树4 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法,就是频繁模…...
selenium 选定ul-li下拉选项中某个指定选项
场景:selenium的下拉选项是ul-li模式,选定某个指定的选项。 from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC # 显示等待def select_li(self, text, *ul_locator):"…...
回归预测 | MATLAB实现FA-SVM萤火虫算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现FA-SVM萤火虫算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现FA-SVM萤火虫算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本介绍…...
使用pytorch 的Transformer进行中英文翻译训练
下面是一个使用torch.nn.Transformer进行序列到序列(Sequence-to-Sequence)的机器翻译任务的示例代码,包括数据加载、模型搭建和训练过程。 import torch import torch.nn as nn from torch.nn import Transformer from torch.utils.data im…...
解决element的select组件创建新的选项可多选且opitions数据源中有数据的情况下,回车不能自动选中创建的问题
前言 最近开发项目使用element-plus库内的select组件,其中有提供一个创建新的选项的用法,但是发现一些小问题,在此记录 版本 “element-plus”: “^2.3.9”, “vue”: “^3.3.4”, 问题 1、在options数据源中无数据的时候,在输入框…...
人工智能大模型加速数据库存储模型发展 行列混合存储下的破局
数据存储模型 专栏内容: postgresql内核源码分析手写数据库toadb并发编程toadb开源库 个人主页:我的主页 座右铭:天行健,君子以自强不息;地势坤,君子以厚德载物. 概述 在数据库的发展过程中,关…...
K8S用户管理体系介绍
1 K8S账户体系介绍 在k8s中,有两类用户,service account和user,我们可以通过创建role或clusterrole,再将账户和role或clusterrole进行绑定来给账号赋予权限,实现权限控制,两类账户的作用如下。 server acc…...
实现chatGPT 聊天样式
效果图 代码: <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Chat Example</title&g…...
day9 STM32 I2C总线通信
I2C总线简介 I2C总线介绍 I2C(Inter-Integrated Circuit)总线(也称IIC或I2C)是由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备,是微电子通信控制领域广泛采用的一种总线标准。 它是同步通…...
终极Shell:Zsh(CentOS7 安装 zsh 及 配置 Oh my zsh)
CentOS7 安装 zsh 及 配置 Oh my zsh 我们在通过Shell操作linux终端时,配置、颜色区分、命令提示大都达不到我们预期的效果或者操作较为繁琐。 今天就来介绍一款终极一个及其好用的类Linux系统中的终端软件,江湖称之为马车中的跑车,跑车中的飞行车,史称『终极 Shell…...
Redis的数据持久化
前言 本文主要介绍Redis的三种持久化方式、AOF持久化策略等 什么是持久化 持久化是指将数据在内存中的状态保存到非易失性介质(如硬盘、固态硬盘等)上的过程。在计算机中,内存中的数据属于易失性数据,一旦断电或重启系统&#…...
CSS 选择器
前言 基础选择器 以下是几种常见的基础选择器。 标签选择器:通过HTML标签名称选择元素。 例如: p {color: red; } 上述样式规则将选择所有<p>标签 ,并将其文字颜色设置为红色。 类选择器:通过类名选择元素。使用类选择…...
上位机工作总结(2023.03-2023.08)
1.工作总结 不知不觉,已经从C#转为Qt开发快半年了。这半年内,也是学习了很多C相关的开发技能,同时自己的技术栈也是进一步丰富,以后跑路就更容易啦,哈哈!自己之前就有Winform和一些简单的Qt项目实践&#…...
APSIM模型参数优化 批量模拟丨气象数据准备、物候发育和光合生产、物质分配与产量模拟、土壤水分平衡算法、土壤碳氮平衡模块、农田管理模块等
随着数字农业和智慧农业的发展,基于过程的农业生产系统模型在模拟作物对气候变化的响应与适应、农田管理优化、作物品种和株型筛选、农田固碳和温室气体排放等领域扮演着越来越重要的作用。APSIM (Agricultural Production Systems sIMulator)模型是世界知名的作物生…...
Azure防火墙
文章目录 什么是Azure防火墙如何部署和配置创建虚拟网络创建虚拟机创建防火墙创建路由表,关联子网、路由配置防火墙策略配置应用程序规则配置网络规则配置 DNAT 规则 更改 Srv-Work 网络接口的主要和辅助 DNS 地址测试防火墙 什么是Azure防火墙 Azure防火墙是一种用…...
【LeetCode】剑指 Offer Ⅱ 第4章:链表(9道题) -- Java Version
题库链接:https://leetcode.cn/problem-list/e8X3pBZi/ 类型题目解决方案双指针剑指 Offer II 021. 删除链表的倒数第 N 个结点双指针 哨兵 ⭐剑指 Offer II 022. 链表中环的入口节点(环形链表)双指针:二次相遇 ⭐剑指 Offer I…...
Android SDK 上手指南|| 第三章 IDE:Android Studio速览
第三章 IDE:Android Studio速览 Android Studio是Google官方提供的IDE,它是基于IntelliJ IDEA开发而来,用来替代Eclipse。不过目前它还属于早期版本,目前的版本是0.4.2,每个3个月发布一个版本,最近的版本…...
Vue--》打造个性化医疗服务的医院预约系统(七)完结篇
今天开始使用 vue3 + ts 搭建一个医院预约系统的前台页面,因为文章会将项目的每一个地方代码的书写都会讲解到,所以本项目会分成好几篇文章进行讲解,我会在最后一篇文章中会将项目代码开源到我的GithHub上,大家可以自行去进行下载运行,希望本文章对有帮助的朋友们能多多关…...
点亮一颗LED灯
TOC LED0 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);//使能APB2的外设时钟GPIO_InitTypeDef GPIO_Initstructure;GPIO_Initstructure.GPIO_Mode GPIO_Mode_Out_PP;//通用推挽输出GPIO_Initstructure.GPIO_Pin GPIO_Pin_5;GPIO_Initstructure.GPIO_Speed GPIO_S…...
SSH远程直连--------------Docker容器
文章目录 1. 下载docker镜像2. 安装ssh服务3. 本地局域网测试4. 安装cpolar5. 配置公网访问地址6. SSH公网远程连接测试7.固定连接公网地址8. SSH固定地址连接测试 在某些特殊需求下,我们想ssh直接远程连接docker 容器,下面我们介绍结合cpolar工具实现ssh远程直接连接docker容器…...
Python/Spring Cloud Alibaba开发--前端复习笔记(1)———— html5和css3.html基础
Python/Spring Cloud Alibaba开发–前端复习笔记(1)———— html5和css3.html基础 1)概述和基本结构 超文本标记语言。超文本指超链接,标记指的是标签。 基本结构: <!DOCTYPE html> 文档声明 <html lang”en”>…...
open cv学习 (十一)视频处理
视频处理 demo1 import cv2 # 打开笔记本内置摄像头 capture cv2.VideoCapture(0) # 笔记本内置摄像头被打开 while capture.isOpened():# 从摄像头中实时读取视频retval, image capture.read()# 在窗口中实时显示读取到的视频cv2.imshow("Video", image)# 等到用…...
函数栈帧理解
本文是从汇编角度来展示的函数调用,而且是在vs2013下根据调试展开的探究,其它平台在一些指令上会有点不同,指令不多,简单记忆一下即可,在我前些年的学习中,学的这几句汇编指令对我调试找错误起了不小的作用…...
【SA8295P 源码分析】70 - QAM8295P 原理图参考设计 之 DP、eDP 接口硬件原理分析
【SA8295P 源码分析】70 - QAM8295P 原理图参考设计 之 DP、eDP 接口硬件原理分析 一、DP 接口(Display Port)介绍二、高通参考硬件原理图分析2.1 高通 Display 接口框图介绍2.2 DP接口 Pin 定义介绍2.3 高通参考设计:DP2、DP3 硬件原理图2.4 高通参考设计:eDP0、eDP1 硬件…...
【CSS动画02--卡片旋转3D】
CSS动画02--卡片旋转3D 介绍代码HTMLCSS css动画02--旋转卡片3D 介绍 当鼠标移动到中间的卡片上会有随着中间的Y轴进行360的旋转,以下是几张图片的介绍,上面是鄙人自己录得一个供大家参考的小视频🤭 代码 HTML <!DOCTYPE html>…...
数据结构<树和二叉树>顺序表存储二叉树实现堆排
✨Blog:🥰不会敲代码的小张:)🥰 🉑推荐专栏:C语言🤪、Cpp😶🌫️、数据结构初阶💀 💽座右铭:“記住,每一天都是一個新的開始…...
理解docker命令
基础命令 帮助命令 docker --help(帮助命令) 用于获取某个命令的帮助信息 #命令帮助 docker 命令 --help 小技巧 换行符 \ 使用命令换符,可以让繁杂命令变得有条理 #命令换行,使用换行符 \ docker ... \... \ 镜像命令 d…...
【SA8295P 源码分析】16 - QNX侧 TouchScreen Panel (TP)线程函数 tp_recv_thread 源码分析
【SA8295P 源码分析】16 - QNX侧 TouchScreen Panel (TP)线程函数 tp_recv_thread 源码分析 一、TP 线程函数:tp_recv_thread()二、处理&上报 坐标数据 cypress_read_touch_data()系列文章汇总见:《【SA8295P 源码分析】00 - 系列文章链接汇总》 本文链接:《【SA8295P…...
第九章MyBatis的技巧
${}和#{}的区别 #{}给sql语句的占位符传值${}直接将值拼接到sql语句上,存在sql注入的现象 什么时候用${} 需要先对sql语句拼接,然后再编译。 字符串排序字段向SQL语句中拼接表名。比如根据日期生成日志表 批量删除 delete from car where in(${ids}…...
计算机技术与软件专业技术资格(水平)考试----系统架构设计师
【原文链接】计算机技术与软件专业技术资格(水平)考试----系统架构设计师 考试简介 计算机软件资格考试是由国家人力资源和社会保障部、工业和信息化部领导下的国家级考试。计算机软件资格考试既是职业资格考试,又是职称资格考试。考试合格…...
招商加盟项目推荐/网站seo技术能不能赚钱
经常有人问我,没有编程经验的人该如何开始开发游戏。在此之前,我总是一个个的尽力回答。然而,后来提相同问题的人数增长到难以处理的地步。我决定,是时候把我所有的建议写成文章,作为一个大概。这 篇文章是针对那些想要…...
海南工程建设资料备案网站/市场调研表模板
转自:http://www.scrumcn.com/agile/scrum-knowledge-library/scrum.html SCRUM 是一个用于开发和维护复杂产品的框架 Scrum 是一个用于开发和维护复杂产品的框架 ,是一个增量的、迭代的开发过程。在这个框架中,整个开发过程由若干个短的迭代…...
wordpress占资源/百度网络营销推广
教程导读:荣耀MagicBook,用三面金属机身,最薄处9.6mm,3.5mm耳机、USB接口齐全。14英寸防眩光显示屏,边框仅5.2mm,屏占比81%,支持专业护眼模式。支持支持接近180度大角度开合,配备了全…...
wordpress添加用户/宣传推广
题意大概是这样,给你一个字符串,你可以进行的操作是这样的, 每次拿走这个串的第一个字母,或者最后一个字母,然后放到 一个新串的末尾(当然啦,新串一开始是为空的),当把旧…...
做网站需要专业/有什么平台可以发广告
试卷结构 目录 第一章 选择题,分值占20%左右,30分左右第二章 科目一第三章 包括老师的教和学生的学,可能出材料分析题和简答题 第一章 教育基础知识与基本理论 答教育制度相关的,要答教育和社会相关的以及教育和人相关的制度。 …...
适合中考做的微机题网站/福州网站开发公司
Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态、数据库驱动网站的速度。Memcached基于一个存储键/值对的hashmap。其守护进程…...