当前位置: 首页 > news >正文

【力扣周赛】第360场周赛

【力扣周赛】第360场周赛

    • 8015.距离原点最远的点
      • 题目描述
      • 解题思路
    • 8022. 找出美丽数组的最小和
      • 题目描述
      • 解题思路

8015.距离原点最远的点

题目描述

描述:给你一个长度为 n 的字符串 moves ,该字符串仅由字符 ‘L’、‘R’ 和 ‘_’ 组成。字符串表示你在一条原点为 0 的数轴上的若干次移动。

你的初始位置就在原点(0),第 i 次移动过程中,你可以根据对应字符选择移动方向:

如果 moves[i] = ‘L’ 或 moves[i] = ‘’ ,可以选择向左移动一个单位距离
如果 moves[i] = ‘R’ 或 moves[i] = '
’ ,可以选择向右移动一个单位距离
移动 n 次之后,请你找出可以到达的距离原点 最远 的点,并返回 从原点到这一点的距离 。

示例 1:

输入:moves = "L_RL__R"
输出:3
解释:可以到达的距离原点 0 最远的点是 -3 ,移动的序列为 "LLRLLLR" 。

示例 2:

输入:moves = "_R__LL_"
输出:5
解释:可以到达的距离原点 0 最远的点是 -5 ,移动的序列为 "LRLLLLL" 。

示例 3:

输入:moves = "_______"
输出:7
解释:可以到达的距离原点 0 最远的点是 7 ,移动的序列为 "RRRRRRR" 。

提示:

1 <= moves.length == n <= 50
moves 仅由字符 ‘L’、‘R’ 和 ‘_’ 组成

解题思路

思路:脑筋急转弯,将直观模拟转换为求解L和R数量,因为L和R可以抵消,故可以将_转换为L和R较多的那个再进行求解。

class Solution {
public:int furthestDistanceFromOrigin(string moves) {int n=moves.size();// l表示L数量 r表示R数量int l=0,r=0;// 转化为l与r抵消剩余多少则往哪个方向移动for(auto move:moves){if(move=='R')r++;if(move=='L')l++;}return l>r?n-2*r:n-2*l;}
};

总结:首先是理解题意,然后是直观模拟,当直观模拟较为复杂,则考虑在不改变结果的情况下如何转换求解以便优化时空复杂度。

8022. 找出美丽数组的最小和

题目描述

描述:给你两个正整数:n 和 target 。

如果数组 nums 满足下述条件,则称其为 美丽数组 。

nums.length == n.
nums 由两两互不相同的正整数组成。
在范围 [0, n-1] 内,不存在 两个 不同 下标 i 和 j ,使得 nums[i] + nums[j] == target 。
返回符合条件的美丽数组所可能具备的 最小 和。

示例 1:

输入:n = 2, target = 3
输出:4
解释:nums = [1,3] 是美丽数组。
- nums 的长度为 n = 2 。
- nums 由两两互不相同的正整数组成。
- 不存在两个不同下标 i 和 j ,使得 nums[i] + nums[j] == 3 。
可以证明 4 是符合条件的美丽数组所可能具备的最小和。

示例 2:

输入:n = 3, target = 3
输出:8
解释:
nums = [1,3,4] 是美丽数组。 
- nums 的长度为 n = 3 。 
- nums 由两两互不相同的正整数组成。 
- 不存在两个不同下标 i 和 j ,使得 nums[i] + nums[j] == 3 。
可以证明 8 是符合条件的美丽数组所可能具备的最小和。

示例 3:

输入:n = 1, target = 1
输出:1
解释:nums = [1] 是美丽数组。

提示:

1 <= n <= 105
1 <= target <= 105

解题思路

思路:最开始是一种很神奇的感觉,没有说那种脑海中浮现出很直观的清晰的逻辑思路,但是写着写着就写出来了。贪心想法,必定是按照1、2、3…n的顺序得到的数组和最小,而且1必定在结果中,所以使用uset存储已经加入结果集合,初始为1,使用num表示当前加入元素,初始为2,使用res表示当前数组和,初始为1,当在uset中找不到与num相加和为target的元素时则将num加入uset并更新数组和res。

class Solution {
public:long long minimumPossibleSum(int n, int target) {// 长度为1的数组最小为1if(n==1)return 1;// 记录元素和 1肯定在long long res=1;// 记录加入元素unordered_set<int> uset;uset.emplace(1);// 记录当前加入元素int num=2;// 1 2 3 4依次加入最小 按照target排除不能加入元素 使用uset记录已经加入元素while(uset.size()<n){if(uset.find(target-num)==uset.end()){uset.emplace(num);res+=num;}num++;}return res;}
};

优化:当时在模拟示例数据时,想到对于元素和target,在和为target的两两配对中必定选取较小的那个数,而对于大于等于target的数选择部分数使得总数据数量为n。

class Solution {
public:long long minimumPossibleSum(int n, int target) {// 第一部分:两两配对中取较小者 1、2、3...k/2 使得n>=mlong long m=min(target/2,n);// 第二部分:剩余n-m个数 k...k+n-m-1 如果最小m为n 那么后者为0return (m*(m+1)+(target*2+n-m-1)*(n-m))/2;}
};

PS:后两题不会hhh,有时候想想刷题真神奇,因为无论如何都不会到达天花板,总是会在某些题中找到无力感和挫败感,但是又有什么办法呢,感觉还是多总结多思考,不断积累思路,然后形成知识体系,总有一天会blingblingbling的吧~~

相关文章:

【力扣周赛】第360场周赛

【力扣周赛】第360场周赛 8015.距离原点最远的点题目描述解题思路 8022. 找出美丽数组的最小和题目描述解题思路 8015.距离原点最远的点 题目描述 描述&#xff1a;给你一个长度为 n 的字符串 moves &#xff0c;该字符串仅由字符 ‘L’、‘R’ 和 ‘_’ 组成。字符串表示你在…...

php环境变量的配置步骤

要配置PHP的环境变量&#xff0c;以便在命令行中直接使用php命令&#xff0c;以下是一般的步骤&#xff1a; Windows 操作系统 下载和安装PHP&#xff1a;首先&#xff0c;你需要从PHP官方网站&#xff08;https://www.php.net/downloads.php&#xff09;下载适用于你的操作系…...

Kdtree

Kdtree kdtree 就是在 n 维空间对数据点进行二分&#xff1b;具体先确定一个根&#xff0c;然后小于在这个维度上的根的节点在左边&#xff0c;大于的在右边&#xff0c;再进行下一个维度的划分。直到维度结束&#xff0c;再重复&#xff0c;或者直到达到了结束条件&#xff1…...

算法leetcode|74. 搜索二维矩阵(rust重拳出击)

文章目录 74. 搜索二维矩阵&#xff1a;样例 1&#xff1a;样例 2&#xff1a;提示&#xff1a; 分析&#xff1a;题解&#xff1a;rust&#xff1a;go&#xff1a;c&#xff1a;python&#xff1a;java&#xff1a; 74. 搜索二维矩阵&#xff1a; 给你一个满足下述两条属性的…...

element浅尝辄止7:InfiniteScroll 无限滚动

滚动加载&#xff1a;滚动至底部时&#xff0c;加载更多数据。 1.如何使用&#xff1f; //在要实现滚动加载的列表上上添加v-infinite-scroll&#xff0c;并赋值相应的加载方法&#xff0c; //可实现滚动到底部时自动执行加载方法。<template><ul class"infinit…...

Day05-Vue基础

Day05-Vue基础 一、单向数据流 父子组件通信。会在父组件中定义好数据,将数据传递给子组件,可以使用这个数据 Vue中针对props这个属性提出了一个单向数据流的概念。 Vue针对props做了一些限制,可以接受值,使用这个值,规范中不要去直接修改这个值 目的是为了对数据流进…...

《机器学习在车险定价中的应用》实验报告

目录 一、实验题目 机器学习在车险定价中的应用 二、实验设置 1. 操作系统&#xff1a; 2. IDE&#xff1a; 3. python&#xff1a; 4. 库&#xff1a; 三、实验内容 实验前的猜想&#xff1a; 四、实验结果 1. 数据预处理及数据划分 独热编码处理结果&#xff08;以…...

14. Docker中实现CI和CD

目录 1、前言 2、什么是CI/CD 3、部署Jenkins 3.1、下载Jenkins 3.2、启动Jenkins 3.3、访问Jenkins页面 4、Jenkins部署一个应用 5、Jenkins实现Docker应用的持续集成和部署 5.1、创建Dockerfile 5.2、集成Jenkins和Docker 6、小结 1、前言 持续集成(CI/CD)是一种…...

【多思路解决喝汽水问题】1瓶汽水1元,2个空瓶可以换一瓶汽水,给20元,可以喝多少汽水

题目内容 喝汽水问题 喝汽水&#xff0c;1瓶汽水1元&#xff0c;2个空瓶可以换一瓶汽水&#xff0c;给20元&#xff0c;可以喝多少汽水&#xff08;编程实现&#xff09;。 题目分析 数学思路分析 根据给出的问题和引用内容&#xff0c;我们可以得出答案。 首先&#xff…...

P1591 阶乘数码(Java高精度)

题目描述 求 n ! n! n! 中某个数码出现的次数。 输入格式 第一行为 t ( t ≤ 10 ) t(t \leq 10) t(t≤10)&#xff0c;表示数据组数。接下来 t t t 行&#xff0c;每行一个正整数 n ( n ≤ 1000 ) n(n \leq 1000) n(n≤1000) 和数码 a a a。 输出格式 对于每组数据&a…...

Mybatis的动态SQL及关键属性和标识的区别(对SQL更灵活的使用)

&#xff08; 虽然文章中有大多文本内容&#xff0c;想了解更深需要耐心看完&#xff0c;必定大有受益 &#xff09; 目录 一、动态SQL ( 1 ) 是什么 ( 2 ) 作用 ( 3 ) 优点 ( 4 ) 特殊标签 ( 5 ) 演示 二、#和$的区别 2.1 #使用 ( 1 ) #占位符语法 ( 2 ) #优点 2.…...

mysql下载

网址 MySQL :: Download MySQL Community Serverhttps://dev.mysql.com/downloads/mysql/ 2、选择MSI进行安装 3、这里我选择离线安装 4、这里我选择直接下载 5、等待下载安装即可...

聚合函数与窗口函数

聚合函数 回答一 聚合函数&#xff08;Aggregate Functions&#xff09;是SQL中的函数&#xff0c;用于对一组数据进行计算&#xff0c;并返回单个结果。聚合函数通常用于统计和汇总数据&#xff0c;包括计算总和、平均值、计数、最大值和最小值等。 以下是一些常见的聚合函…...

c语言实现堆

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、树1、树的概念2、树的相关概念3、树的表示 二、二叉树1、二叉树概念2、特殊的二叉树3、二叉树的性质4、二叉树的顺序结构5、二叉树的链式结构 三、堆(二叉树…...

ubuntu 如何将文件打包成tar.gz

要将文件打包成.tar.gz文件&#xff0c;可以使用以下命令&#xff1a; tar -czvf 文件名.tar.gz 文件路径 其中&#xff0c;-c表示创建新的归档文件&#xff0c;-z表示使用gzip进行压缩&#xff0c;-v表示显示详细的打包过程&#xff0c;-f表示指定归档文件的名称。 例如&am…...

前端优化页面加载速度的方法(持续更新)

提速方法方向 延迟脚本加载 使用 async 属性&#xff1a; 在这种方法中&#xff0c;脚本将在下载完成后立即执行&#xff0c;而不会阻塞其他页面资源的加载和渲染。这适用于那些不依赖于其他脚本和页面内容的脚本&#xff0c;例如分析脚本等。示例如下&#xff1a; html …...

利用SSL证书的SNI特性建立自己的爬虫ip服务器

今天我要和大家分享一个关于自建多域名HTTPS爬虫ip服务器的知识&#xff0c;让你的爬虫ip服务器更加强大&#xff01;无论是用于数据抓取、反爬虫还是网络调试&#xff0c;自建一个支持多个域名的HTTPS爬虫ip服务器都是非常有价值的。本文将详细介绍如何利用SSL证书的SNI&#…...

HTML和CSS

HTML HTML(Hyper Text Markup Language):超文本语言 超文本&#xff1a;超越了文本的限制&#xff0c;比普通文本更强大。除了文字信息&#xff0c;还可以定义图片、音频、视频等内容。 标记语言&#xff1a;由标签构成的语言 HTML标签都是预定义好的。例如&#xff1a;使用&l…...

C#的IndexOf

在 C# 中&#xff0c;IndexOf 是一个字符串、数组或列表的方法&#xff0c;用于查找指定元素的第一个匹配项的索引。它返回一个整数值&#xff0c;表示匹配项在集合中的位置&#xff0c;如果未找到匹配项&#xff0c;则返回 -1。 IndexOf 方法有多个重载形式&#xff0c;可以根…...

深度学习2.神经网络、机器学习、人工智能

目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、神经网络…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”&#xff0c;无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息&#xff1a; 关注测试号&#xff1a;扫二维码关注测试号。 发送模版消息&#xff1a; import requests da…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词

Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵&#xff0c;其中每行&#xff0c;每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid&#xff0c;其中有多少个 3 3 的 “幻方” 子矩阵&am…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...