当前位置: 首页 > news >正文

代码随想录NO39 |0-1背包问题理论基础 416.分割等和子集

0-1背包问题理论基础 分割等和子集

  • 1. 0-1背包问题理论基础(二维数组实现)
  • 2. 0-1背包问题理论基础 二(一维数组实现)

1. 0-1背包问题理论基础(二维数组实现)

背包问题一般分为这几种:
在这里插入图片描述
0-1背包问题:有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

二维dp数组01背包

  • 确定dp数组以及下标的含义
    对于背包问题,有一种写法, 是使用二维数组,即dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
  • 确定递推公式
    再回顾一下dp[i][j]的含义:从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少。
    那么可以有两个方向推出来dp[i][j],
    • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
    • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
      所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
  • dp数组如何初始化
  • 确定遍历顺序 先遍历物品更好理解。
  • 举例推导dp数组
def test_2_wei_bag_problem1(bag_size, weight, value) -> int: rows, cols = len(weight), bag_size + 1dp = [[0 for _ in range(cols)] for _ in range(rows)]# 初始化dp数组. for i in range(rows): dp[i][0] = 0first_item_weight, first_item_value = weight[0], value[0]for j in range(1, cols): 	if first_item_weight <= j: dp[0][j] = first_item_value# 更新dp数组: 先遍历物品, 再遍历背包. for i in range(1, len(weight)): cur_weight, cur_val = weight[i], value[i]for j in range(1, cols): if cur_weight > j: # 说明背包装不下当前物品. dp[i][j] = dp[i - 1][j] # 所以不装当前物品. else: # 定义dp数组: dp[i][j] 前i个物品里,放进容量为j的背包,价值总和最大是多少。dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - cur_weight]+ cur_val)print(dp)if __name__ == "__main__": bag_size = 4weight = [1, 3, 4]value = [15, 20, 30]test_2_wei_bag_problem1(bag_size, weight, value)

2. 0-1背包问题理论基础 二(一维数组实现)

def test_1_wei_bag_problem():weight = [1, 3, 4]value = [15, 20, 30]bag_weight = 4# 初始化: 全为0dp = [0] * (bag_weight + 1)# 先遍历物品, 再遍历背包容量for i in range(len(weight)):for j in range(bag_weight, weight[i] - 1, -1):# 递归公式dp[j] = max(dp[j], dp[j - weight[i]] + value[i])print(dp)test_1_wei_bag_problem()

416. 分割等和子集

给你一个 只包含正整数 的非空数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

只有确定了如下四点,才能把01背包问题套到本题上来。

  • 背包的体积为sum / 2
  • 背包要放入的商品(集合里的元素)重量为 元素的数值,价值也为元素的数值
  • 背包如果正好装满,说明找到了总和为 sum / 2 的子集。
  • 背包中每一个元素是不可重复放入。
    以上分析完,我们就可以套用01背包,来解决这个问题了。
class Solution:def canPartition(self, nums: List[int]) -> bool:target = sum(nums)if target % 2 == 1: return Falsetarget //= 2dp = [0] * 10001for i in range(len(nums)):for j in range(target, nums[i] - 1, -1):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])return target == dp[target]

相关文章:

代码随想录NO39 |0-1背包问题理论基础 416.分割等和子集

0-1背包问题理论基础 分割等和子集1. 0-1背包问题理论基础(二维数组实现)2. 0-1背包问题理论基础 二&#xff08;一维数组实现&#xff09;1. 0-1背包问题理论基础(二维数组实现) 背包问题一般分为这几种&#xff1a; 0-1背包问题&#xff1a;有n件物品和一个最多能背重量为w…...

FITC-PEG-FA,荧光素-聚乙二醇-叶酸,FA-PEG-FITC,实验室科研试剂,提供质量检测

FITC-PEG-FA&#xff0c;荧光素-聚乙二醇-叶酸 中文名称&#xff1a;荧光素-聚乙二醇-叶酸 英文名称&#xff1a;FITC-PEG-FA 英文别名&#xff1a;Fluorescein-PEG-Folic Acid 性状&#xff1a;基于不同的分子量&#xff0c;呈白色/类白色固体&#xff0c;或粘稠液体。 溶…...

简洁易懂:源码+实战讲解Redisson并发锁及看门狗自动续期

1 缘起 有一次同事问Redisson存储的键是否为hash&#xff1f; 我当时&#xff0c;没有看Redisson的相关源码&#xff0c;只知道应用&#xff0c; 所以没有办法回答&#xff0c;于是开始看看Redisson实现的源码&#xff0c; 顺便写了一个单机Redisson测试&#xff0c; 发现Redi…...

TCP 三次握手和四次挥手

✏️作者&#xff1a;银河罐头 &#x1f4cb;系列专栏&#xff1a;JavaEE &#x1f332;“种一棵树最好的时间是十年前&#xff0c;其次是现在” 目录TCP 建立连接(三次握手)为啥不能是 4 次&#xff1f;为啥不能是 2 次&#xff1f;三次握手的意义&#xff1a;TCP 断开连接(四…...

JavaWeb复习

JavaWeb复习一.概述1.概念2.B/S和C/S 架构二.HTTP通信协议概述1.概念2.HTTP1.0 与 HTTP1.1 版本3.HTTP 协议组成4.常见状态码5.GET 与 POST 请求方式三.Tomcat1.Web服务器介绍2.安装&#xff08;Windows&#xff09;3.Tomcat目录结构4.server.xml部分配置解释四.Servlet1.概念2…...

P14 PyTorch AutoGrad

前言&#xff1a;激活函数与loss的梯度PyTorch 提供了Auto Grad 功能&#xff0c;这里系统讲解一下torch.autograd.grad系统的工作原理&#xff0c;了解graph 结构目录&#xff1a;1: require_grad False2: require_grad True3&#xff1a; 多层bakcward 原理4&#xff1a; in…...

前端报表如何实现无预览打印解决方案或静默打印

在前端开发中&#xff0c;除了将数据呈现后&#xff0c;我们往往需要为用户提供&#xff0c;打印&#xff0c;导出等能力&#xff0c;导出是为了存档或是二次分析&#xff0c;而打印则因为很多单据需要打印出来作为主要的单据来进行下一环节的票据支撑&#xff0c; 而前端打印可…...

Operating System Course 2 - My OS

Computer Startup process上一篇&#xff1a;http://t.csdn.cn/XfUKt 讲到这个启动设备的第一个扇区&#xff1a;引导扇区。那么引导扇区的代码长什么样子&#xff1f;这里得看引导扇区代码源文件bootsect.s&#xff08;.s后缀文件为用汇编语言编写的源代码文件&#xff09;。另…...

离散数学 课时一 命题逻辑的基本概念

1 命题 1、命题&#xff1a;可以判断其真值的陈述句 2、真值&#xff1a;真或者假(1或者0) 3、真命题&#xff1a;真值为真的命题 4、假命题&#xff1a;真值为假的命题 5、原子命题&#xff1a;不可以再被分解成更简单的命题 6、复合命题&#xff1a;由原子命题通过联结词联结…...

Word文档带有权限密码怎么办?

Word文档的权限密码指的是什么&#xff1f;其实这是Word文档的保护方法之一&#xff0c;具体指Word文档的编辑、修改受到了限制&#xff0c;需要输入密码才能进行。 设置了权限密码的Word文档还是可以直接打开&#xff0c;只有当需要编辑或者修改内容的时候&#xff0c;才会发…...

C++多态

1. 多态的概念1.1 概念多态的概念&#xff1a;通俗来说&#xff0c;就是多种形态&#xff0c;具体点就是去完成某个行为&#xff0c;当不同的对象去完成时会产生出不同的状态举个例子&#xff1a;比如买票这个行为&#xff0c;当普通人买票时&#xff0c;是全价买票&#xff1b…...

访问学者如何申请美国J1签证?

一、申请美国J1签证的步骤&#xff1a; 第一步&#xff1a;填写I901表。 填写I901表会收取SERVIS费用180美元&#xff0c;可以用VISA/Master卡直接网上支付。填完后打印收据单或者存成PDF后续再打印&#xff0c;记下I901收据编号。 第二步&#xff1a;DS-160表填写。 填写DS-…...

使用gitlab ci/cd来发布一个.net 项目

gitlab runner的安装和基本使用:https://bear-coding.blog.csdn.net/article/details/120591711安装并给项目配置完gitlab runner后再操作后面步骤。实现目标&#xff1a;master分支代码有变更的时候自动构建build。当开发人员在gitlab上给项目打一个tag标签分支的时候自动触发…...

笔试题-2023-蔚来-数字芯片设计【纯净题目版】

回到首页:2023 数字IC设计秋招复盘——数十家公司笔试题、面试实录 推荐内容:数字IC设计学习比较实用的资料推荐 题目背景 笔试时间:2022.08.24应聘岗位:校招-芯片逻辑综合工程师-智能硬件笔试时长:90min笔试平台:nowcoder牛客网题目类型:不定项选择题(15道)、填空题…...

ThreadLocal 详解

ThreadLocal简介JDK源码对ThreadLocal类的注释如下&#xff1a;ThreadLocal提供线程局部变量&#xff0c;使得每个线程都有自己的、独立初始化的变量副本ThreadLocal实例通常是类中的private static字段&#xff0c;用于将状态与线程相关联&#xff0c;如用户ID、事务ID只要线程…...

【Java 面试合集】重写以及重载有什么区别能简单说说嘛

重写以及重载有什么区别能简单说说嘛 前述 这是一道非常基础的面试题&#xff0c;我们在回答的过程中一定要逐一横向比较。 从方法的 修饰符&#xff0c;返回值&#xff0c;方法名&#xff0c;含义&#xff0c;参数等方面进行逐一分析来比较不同。 话不多话&#xff0c;看下…...

到底什么是股票委托接口?

在量化股票市场上&#xff0c;常见的股票委托接口其实有着不一样的交集&#xff0c;就拿股票交易接口&#xff0c;在量化股票跟程序化交易中&#xff0c;有共同之处就是在于直接委托执行下单&#xff0c;并且能很快的就能够将策略输出在账户持仓数据中&#xff0c;继续缓存下来…...

Linux驱动:VPU

1. 前言 限于作者能力水平&#xff0c;本文可能存在谬误&#xff0c;因此而给读者带来的损失&#xff0c;作者不做任何承诺。 2. 概述 VPU 是用来进行图像、视频数据进行硬件编、解码的硬件模块。内部集成了 Encoder、Decoder 功能部件进行图像、视频数据进行硬件编、解码&a…...

简介Servlet

目录 一、maven中心库 二、简介Servlet 三、实现Servlet动态页面 1、创建一个maven项目 2、引入依赖 3、创建目录结构 4、编写Servlet代码 5、打包 6、部署 7、验证程序 四、Servlet的运行原理 五、Tomcat伪代码 1、Tomcat初始化 a、让Tomcat先从指定的目录…...

Learning C++ No.7

引言&#xff1a; 北京时间&#xff1a;20223/2/9/22:20&#xff0c;距离大一下学期开学还有2天&#xff0c;昨天收到好消息&#xff0c;开学不要考试了&#xff0c;我并不是害怕考试&#xff0c;考试在我心里&#xff0c;地位不高&#xff0c;可能只有当我挂了&#xff0c;才能…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

微服务通信安全:深入解析mTLS的原理与实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、引言&#xff1a;微服务时代的通信安全挑战 随着云原生和微服务架构的普及&#xff0c;服务间的通信安全成为系统设计的核心议题。传统的单体架构中&…...

【深度学习新浪潮】什么是credit assignment problem?

Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...