当前位置: 首页 > news >正文

使用DeepSpeed加速大型模型训练(二)

使用DeepSpeed加速大型模型训练

在这篇文章中,我们将了解如何利用Accelerate库来训练大型模型,从而使用户能够利用DeeSpeed的 ZeRO 功能。

简介

尝试训练大型模型时是否厌倦了内存不足 (OOM) 错误?我们已经为您提供了保障。大型模型性能非常好[1],但很难使用可用的硬件进行训练。为了充分利用可用硬件来训练大型模型,可以使用 ZeRO(零冗余优化器)[2] 来利用数据并行性。

下面是使用 ZeRO 的数据并行性的简短描述以及此博客文章中的图表

a. 第 1 阶段:分片优化器状态跨数据并行工作器/GPUs的状态
b. 第 2 阶段:分片优化器状态+梯度跨数据并行工作器/GPUs
c. 第 3 阶段:分片优化器状态+梯度+模型参数跨数据并行工作器/GPUs
d. 优化器卸载(Optimizer Offload):将梯度+优化器状态卸载到ZERO Stage 2之上的CPU/磁盘构建
e. 参数卸载(Param Offload):将模型参数卸载到ZERO Stage 3之上的CPU/磁盘构建

在这篇博文中,我们将看看如何使用ZeRO和Accelerate来利用数据并行性。DeepSpeed, FairScale和PyTorch fullyshardeddataparlparallel (FSDP)实现了ZERO论文的核心思想。伴随博客,通过DeepSpeed和FairScale 使用ZeRO适应更多和训练更快[4]和使用PyTorch完全分片并行数据加速大型模型训练[5], 这些已经集成在transformer Trainer和accelerate中。背后的解释可以看这些博客,主要集中在使用Accelerate来利用DeepSpeed ZeRO。

Accelerate :利用DeepSpeed ZeRO没有任何代码的变化

我们将研究只微调编码器模型用于文本分类的任务。我们将使用预训练microsoft/deberta-v2-xlarge-mnli (900M params) 用于对MRPC GLUE数据集进行微调。
代码可以在这里找到 run_cls_no_trainer.py它类似于这里的官方文本分类示例,只是增加了计算训练和验证时间的逻辑。让我们比较分布式数据并行(DDP)和DeepSpeed ZeRO Stage-2在多gpu设置中的性能。

要启用DeepSpeed ZeRO Stage-2而无需任何代码更改,请运行加速配置并利用 Accelerate DeepSpeed Plugin

ZeRO Stage-2 DeepSpeed Plugin 示例

配置

compute_environment: LOCAL_MACHINE
deepspeed_config:gradient_accumulation_steps: 1gradient_clipping: 1.0offload_optimizer_device: noneoffload_param_device: nonezero3_init_flag: falsezero_stage: 2
distributed_type: DEEPSPEED
fsdp_config: {}
machine_rank: 0
main_process_ip: null
main_process_port: null
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 2
use_cpu: false

现在,运行下面的命令进行训练

accelerate launch run_cls_no_trainer.py \--model_name_or_path "microsoft/deberta-v2-xlarge-mnli" \--task_name "mrpc" \--ignore_mismatched_sizes \--max_length 128 \--per_device_train_batch_size 40 \--learning_rate 2e-5 \--num_train_epochs 3 \--output_dir "/tmp/mrpc/deepspeed_stage2/" \--with_tracking \--report_to "wandb" \

在我们的单节点多gpu设置中,DDP支持的无OOM错误的最大批处理大小是8。相比之下,DeepSpeed Zero-Stage 2允许批量大小为40,而不会出现OOM错误。因此,与DDP相比,DeepSpeed使每个GPU能够容纳5倍以上的数据。下面是wandb运行的图表快照,以及比较DDP和DeepSpeed的基准测试表。



表1:DeepSpeed ZeRO Stage-2在DeBERTa-XL (900M)模型上的基准测试
使用更大的批处理大小,我们观察到总训练时间加快了3.5倍,而性能指标没有下降,所有这些都没有改变任何代码。

为了能够调整更多选项,您将需要使用DeepSpeed配置文件和最小的代码更改。我们来看看怎么做。

Accelerate :利用 DeepSpeed 配置文件调整更多选项

首先,我们将研究微调序列到序列模型以训练我们自己的聊天机器人的任务。具体来说,我们将facebook/blenderbot-400M-distill在smangrul/MuDoConv(多域对话)数据集上进行微调。该数据集包含来自 10 个不同数据源的对话,涵盖角色、基于特定情感背景、目标导向(例如餐厅预订)和一般维基百科主题(例如板球)。

代码可以在这里找到run_seq2seq_no_trainer.py。目前有效衡量聊天机器人的参与度和人性化的做法是通过人工评估,这是昂贵的[6]。对于本例,跟踪的指标是BLEU分数(这不是理想的,但却是此类任务的常规指标)。如果您可以访问支持bfloat16精度的gpu,则可以调整代码以训练更大的T5模型,否则您将遇到NaN损失值。我们将在10000个训练样本和1000个评估样本上运行一个快速基准测试,因为我们对DeepSpeed和DDP感兴趣。我们将利用DeepSpeed Zero Stage-2 配置 zero2_config_accelerate.json(如下所示)进行训练。有关各种配置特性的详细信息,请参阅DeeSpeed文档。

{"fp16": {"enabled": "true","loss_scale": 0,"loss_scale_window": 1000,"initial_scale_power": 15,"hysteresis": 2,"min_loss_scale": 1},"optimizer": {"type": "AdamW","params": {"lr": "auto","weight_decay": "auto","torch_adam": true,"adam_w_mode": true}},"scheduler": {"type": "WarmupDecayLR","params": {"warmup_min_lr": "auto","warmup_max_lr": "auto","warmup_num_steps": "auto","total_num_steps": "auto"}},"zero_optimization": {"stage": 2,"allgather_partitions": true,"allgather_bucket_size": 2e8,"overlap_comm": true,"reduce_scatter": true,"reduce_bucket_size": 2e8,"contiguous_gradients": true},"gradient_accumulation_steps": 1,"gradient_clipping": "auto","steps_per_print": 2000,"train_batch_size": "auto","train_micro_batch_size_per_gpu": "auto","wall_clock_breakdown": false
}

要使用上述配置启用DeepSpeed ZeRO Stage-2,请运行accelerate config并提供配置文件路径。更多详细信息,请参考accelerate官方文档中的DeepSpeed配置文件。

ZeRO Stage-2 DeepSpeed配置文件示例

compute_environment: LOCAL_MACHINE
deepspeed_config:deepspeed_config_file: /path/to/zero2_config_accelerate.jsonzero3_init_flag: false
distributed_type: DEEPSPEED
fsdp_config: {}
machine_rank: 0
main_process_ip: null
main_process_port: null
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 2
use_cpu: false

现在,运行下面的命令进行训练

accelerate launch run_seq2seq_no_trainer.py \--dataset_name "smangrul/MuDoConv" \--max_source_length 128 \--source_prefix "chatbot: " \--max_target_length 64 \--val_max_target_length 64 \--val_min_target_length 20 \--n_val_batch_generations 5 \--n_train 10000 \--n_val 1000 \--pad_to_max_length \--num_beams 10 \--model_name_or_path "facebook/blenderbot-400M-distill" \--per_device_train_batch_size 200 \--per_device_eval_batch_size 100 \--learning_rate 1e-6 \--weight_decay 0.0 \--num_train_epochs 1 \--gradient_accumulation_steps 1 \--num_warmup_steps 100 \--output_dir "/tmp/deepspeed_zero_stage2_accelerate_test" \--seed 25 \--logging_steps 100 \--with_tracking \--report_to "wandb" \--report_name "blenderbot_400M_finetuning"

当使用DeepSpeed配置时,如果用户在配置中指定了优化器和调度器,用户将不得不使用accelerate.utils.DummyOptimaccelerate.utils.DummyScheduler。这些都是用户需要做的小改动。下面我们展示了使用DeepSpeed配置时所需的最小更改的示例

- optimizer = torch.optim.Adam(optimizer_grouped_parameters, lr=args.learning_rate)
+ optimizer = accelerate.utils.DummyOptim(optimizer_grouped_parameters, lr=args.learning_rate)- lr_scheduler = get_scheduler(
-     name=args.lr_scheduler_type,
-     optimizer=optimizer,
-     num_warmup_steps=args.num_warmup_steps,
-     num_training_steps=args.max_train_steps,
- )+ lr_scheduler = accelerate.utils.DummyScheduler(
+     optimizer, total_num_steps=args.max_train_steps, warmup_num_steps=args.num_warmup_steps
+ )


表2:DeepSpeed ZeRO Stage-2在BlenderBot (400M)模型上的基准测试
在我们的单节点多gpu设置中,DDP支持的无OOM错误的最大批处理大小是100。相比之下,DeepSpeed Zero-Stage 2允许批量大小为200,而不会出现OOM错误。因此,与DDP相比,DeepSpeed使每个GPU能够容纳2倍以上的数据。我们观察到训练加速了1.44倍,评估加速了1.23倍,因为我们能够在相同的可用硬件上容纳更多的数据。由于这个模型是中等大小,加速不是那么令人兴奋,但这将改善与更大的模型。你可以和使用Space smangrul/Chat-E上的全部数据训练的聊天机器人聊天。你可以给机器人一个角色,一个特定情感的对话,用于目标导向的任务或自由流动的方式。下面是与聊天机器人的有趣对话。您可以在这里找到使用不同上下文的更多对话的快照。

CPU/磁盘卸载,使训练庞大的模型将不适合GPU内存

在单个24GB NVIDIA Titan RTX GPU上,即使批量大小为1,也无法训练GPT-XL模型(1.5B参数)。我们将看看如何使用DeepSpeed ZeRO Stage-3与CPU卸载优化器状态,梯度和参数来训练GPT-XL模型。

我们将利用DeepSpeed Zero Stage-3 CPU卸载配置zero3_offload_config_accelerate.json (如下所示)进行训练。

{"fp16": {"enabled": true,"loss_scale": 0,"loss_scale_window": 1000,"initial_scale_power": 16,"hysteresis": 2,"min_loss_scale": 1},"optimizer": {"type": "AdamW","params": {"lr": "auto","weight_decay": "auto"}},"scheduler": {"type": "WarmupDecayLR","params": {"warmup_min_lr": "auto","warmup_max_lr": "auto","warmup_num_steps": "auto","total_num_steps": "auto"}},"zero_optimization": {"stage": 3,"offload_optimizer": {"device": "cpu","pin_memory": true},"offload_param": {"device": "cpu","pin_memory": true},"overlap_comm": true,"contiguous_gradients": true,"reduce_bucket_size": "auto","stage3_prefetch_bucket_size": "auto","stage3_param_persistence_threshold": "auto","sub_group_size": 1e9,"stage3_max_live_parameters": 1e9,"stage3_max_reuse_distance": 1e9,"stage3_gather_16bit_weights_on_model_save": true},"gradient_accumulation_steps": 1,"gradient_clipping": "auto","steps_per_print": 2000,"train_batch_size": "auto","train_micro_batch_size_per_gpu": "auto","wall_clock_breakdown": false
}

ZeRO Stage-3 CPU Offload DeepSpeed配置文件示例

compute_environment: LOCAL_MACHINE
deepspeed_config:deepspeed_config_file: /path/to/zero3_offload_config_accelerate.jsonzero3_init_flag: true
distributed_type: DEEPSPEED
fsdp_config: {}
machine_rank: 0
main_process_ip: null
main_process_port: null
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 2
use_cpu: false

现在,运行下面的命令进行训练

表3:在GPT-XL (1.5B)模型上对DeepSpeed ZeRO Stage-3 CPU Offload进行基准测试
即使批大小为1,DDP也会导致OOM错误。另一方面,使用DeepSpeed ZeRO Stage-3 CPU卸载,我们可以以16个batch_size大小进行训练。

最后,请记住,Accelerate只集成了DeepSpeed,因此,如果您对DeepSpeed的使用有任何问题或疑问,请向DeepSpeed GitHub提交问题。

相关文章:

使用DeepSpeed加速大型模型训练(二)

使用DeepSpeed加速大型模型训练 在这篇文章中,我们将了解如何利用Accelerate库来训练大型模型,从而使用户能够利用DeeSpeed的 ZeRO 功能。 简介 尝试训练大型模型时是否厌倦了内存不足 (OOM) 错误?我们已经为您提供了保障。大型模型性能非…...

ASP.net web应用 GridView控件常用方法

GridView 控件是 ASP.NET Web Forms 中常用的数据展示控件之一。它提供了一个网格形式的表格,用于显示和编辑数据。GridView 控件对于包含大量数据、需要进行分页、排序和筛选的情况非常有用。 GridView 控件的主要特性包括: 数据绑定:GridV…...

MATLAB入门一基础知识

MATLAB入门一基础知识 此篇为课程学习笔记 链接: link 什么是MATLAB 平时所说的MATLAB既是一款软件又是一种编程语言,只是这种高级解释性语言是在配套的软件下进行开发的 MATLAB的一个特性 MATLAB的一个特性,如果一条语句以英文分号‘;’结尾&…...

SpringMVC实现文件上传和下载功能

文件下载 ResponseEntity用于控制器方法的返回值类型,该控制器方法的返回值就是响应到浏览器的响应报文。具体步骤如下: 获取下载文件的位置;创建流,读取文件;设置响应信息,包括响应头,响应体以…...

CHS零壹视频恢复程序OCR使用方法

目前CHS零壹视频恢复程序监控版、专业版、高级版已经支持了OCR,OCR是一种光学识别系统,通俗说就和扫描仪带的OCR软件一样的原理: 分析照片->OCR获取字符串->整理字符串->输出 使用方法如下(以CHS零壹视频恢复程序监控版…...

云备份——服务端客户端联合测试

一,准备工作 服务端清空备份文件信息、备份文件夹、压缩文件夹 客户端清空备份文件夹 二,开始测试 服务端配置文件 先启动服务端和客户端 向客户端指定文件夹放入稍微大点的文件,方便后续测试断点重传 2.1 上传功能测试 客户端自动上传成功…...

L2 数据仓库和Hive环境配置

1.数据仓库架构 数据仓库DW主要是一个用于存储,分析,报告的数据系统。数据仓库的目的是面向分析的集成化数据环境,分析结果为企业提供决策支持。-DW不产生和消耗数据 结构数据:数据库中数据,CSV文件 直接导入DW非结构…...

【iOS】MVC

文章目录 前言一、MVC各层职责1.1、controller层1.2、model层1.3、view层 二、总结三、优缺点3.1、优点3.2、缺点 四、代码示例 前言 MVC模式的目的是实现一种动态的程序设计,使后续对程序的修改和扩展简化,并且使程序某一部分的重复利用成为可能。除此…...

JavaScript-----jQuery

目录 前言: 1. jQuery介绍 2. 工厂函数 - $() jQuery通过选择器获取元素,$("选择器") 过滤选择器,需要结合其他选择器使用。 3.操作元素内容 4. 操作标签属性 5. 操作标签样式 6. 元素的创建,添加,删除 7.数据与对象遍历…...

Stream流

Stream操作流 在Java 8中,得益于Lambda所带来的函数式编程,引入了一个全新的Stream概念,用于解决已有集合类库既有的弊端。 1.1 集合的迭代 几乎所有的集合(如 Collection 接口或 Map 接口等)都支持直接或间接的迭代…...

javaee spring 声明式事务管理方式2 注解方式

spring配置文件 <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema/beans"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xmlns:context"http://www.springframewo…...

基于SpringBoot+微信小程序的智慧医疗线上预约问诊小程序

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取项目下载方式&#x1f345; 一、项目背景介绍&#xff1a; 近年来&#xff0c;随…...

注意力机制讲解与代码解析

一、SEBlock(通道注意力机制) 先在H*W维度进行压缩&#xff0c;全局平均池化将每个通道平均为一个值。 &#xff08;B, C, H, W&#xff09;---- (B, C, 1, 1) 利用各channel维度的相关性计算权重 (B, C, 1, 1) --- (B, C//K, 1, 1) --- (B, C, 1, 1) --- sigmoid 与原特征相…...

微调 TrOCR – 训练 TrOCR 识别弯曲文本

TrOCR(基于 Transformer 的光学字符识别)模型是性能最佳的 OCR 模型之一。在我们之前的文章中,我们分析了它们在单行打印和手写文本上的表现。然而,与任何其他深度学习模型一样,它们也有其局限性。TrOCR 在处理开箱即用的弯曲文本时表现不佳。本文将通过在弯曲文本数据集上…...

Jetsonnano B01 笔记7:Mediapipe与人脸手势识别

今日继续我的Jetsonnano学习之路&#xff0c;今日学习安装使用的是&#xff1a;MediaPipe 一款开源的多媒体机器学习模型应用框架。可在移动设备、工作站和服务 器上跨平台运行&#xff0c;并支持移动 GPU 加速。 介绍与程序搬运官方&#xff0c;只是自己的学习记录笔记&am…...

vue学习之v-if/v-else/v-else-if

v-else/v-else-if 创建 demo7.html,内容如下 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Docum…...

ansible的安装和简单的块使用

目录 一、概述 二、安装 1、选择源 2、安装ansible 3、模块查看 三、实验 1、拓扑​编辑 2、设置组、ping模块 3、hostname模块 4、file模块 ​编辑 5、stat模块 6、copy模块&#xff08;本地拷贝到远程&#xff09; 7、fetch模块与copy模块类似&#xff0c;但作用…...

Android 状态栏显示运营商名称

Android 原生设计中在锁屏界面会显示运营商名称&#xff0c;用户界面中&#xff0c;大概是基于 icon 数量长度显示考虑&#xff0c;对运营商名称不作显示。但是国内基本都加上运营商名称。对图标显示长度优化基本都是&#xff1a;缩小运营商字体、限制字数长度、信号图标压缩上…...

10.Xaml ListBox控件

1.运行界面 2.运行源码 a.Xaml 源码 <Grid Name="Grid1"><!--IsSelected="True" 表示选中--><ListBox x:Name="listBo...

基于vue3和element-plus的省市区级联组件

git地址&#xff1a;https://github.com/ht-sauce/elui-china-area-dht 使用:npm i elui-china-area-dht 默认使用 使用方法 <template><div class"app"><!--默认使用--><elui-china-area-dht change"onChange"></elui-china…...

Paper: 利用RNN来提取恶意软件家族的API调用模式

论文 摘要 恶意软件家族分类是预测恶意软件特征的好方法&#xff0c;因为属于同一家族的恶意软件往往有相似的行为特征恶意软件检测或分类方法分静态分析和动态分析两种&#xff1a; 静态分析基于恶意软件中包含的特定签名进行分析&#xff0c;优点是分析的范围覆盖了整个代码…...

sdkman 安装以及 graalvm安装

sdkman安装以及graalvm安装全过程, (可能需要梯子) tiamTiam-Lenovo:~$ curl -s "https://get.sdkman.io" | bash-syyyyyyys:/yho: -yd./yh/ m..oho. hy ..sh/ :N -/…...

如何正确使用 WEB 接口的 HTTP 状态码和业务状态码?

当设计和开发 Web 接口时&#xff0c;必然会和 HTTP 状态码与业务状态码这两个概念打交道。很多同学可能没有注意过这两个概念或者两者的区别&#xff0c;做得稀里糊涂&#xff0c;接下来详细讲解下二者的定义、区别和使用方法。 HTTP 状态码 HTTP 状态码是由 HTTP 协议定义的…...

Spark【Spark SQL(三)DataSet】

DataSet DataFrame 的出现&#xff0c;让 Spark 可以更好地处理结构化数据的计算&#xff0c;但存在一个问题&#xff1a;编译时的类型安全问题&#xff0c;为了解决它&#xff0c;Spark 引入了 DataSet API&#xff08;DataFrame API 的扩展&#xff09;。DataSet 是分布式的数…...

制作立体图像实用软件:3DMasterKit 10.7 Crack

3DMasterKit 软件专为创建具有逼真 3D 和运动效果的光栅图片而设计&#xff1a;翻转、动画、变形和缩放。 打印机、广告工作室、摄影工作室和摄影师将发现 3DMasterKit 是一种有用且经济高效的解决方案&#xff0c;可将其业务扩展到新的维度&#xff0c;提高生成的 3D 图像和光…...

高校 Web 站点网络安全面临的主要的威胁

校园网 Web 站点的主要安全威胁来源于计算机病毒、内部用户恶意攻击和 破坏、内部用户非恶意的错误操作和网络黑客入侵等。 2.1 计算机病毒 计算机病毒是指编制者在计算机程序中插入的破坏计算机功能或者数据&#xff0c; 影响计算机使用并且能够自我复制的一组计算机指令或…...

vue前端解决跨域

1,首先 axios请求&#xff0c;看后端接口路径&#xff0c;http://122.226.146.110:25002/api/xx/ResxxList&#xff0c;所以baseURL地址改成 ‘/api’ let setAxios originAxios.create({baseURL: /api, //这里要改掉timeout: 20000 // request timeout}); export default s…...

【Cicadaplayer】解码线程及队列实现

4.4分支https://github.com/alibaba/CicadaPlayer/blob/release/0.4.4/framework/codec/ActiveDecoder.h对外:送入多个包,获取一个帧 int send_packet(std::unique_ptr<IAFPacket> &packet, uint64_t timeOut) override;int getFrame(std::u...

把文件上传到Gitee的详细步骤

目录 第一步&#xff1a;创建一个空仓库 第二步&#xff1a;找到你想上传的文件所在的地址&#xff0c;打开命令窗口&#xff0c;git init 第三步&#xff1a;git add 想上传的文件 &#xff0c;git commit -m "给这次提交取个名字" 第四步&#xff1a;和咱们在第…...

基于keras中Lenet对于mnist的处理

文章目录 MNIST导入必要的包加载数据可视化数据集查看数据集的分布开始训练画出loss图画出accuracy图 使用数据外的图来测试图片可视化转化灰度图的可视化可视化卷积层的特征图第一层卷积 conv1 和 pool1第二层卷积 conv2 和 pool2 MNIST MNIST&#xff08;Modified National …...

公司模块网站制作/百度一下你就知道下

项目采用的是MVC模式对模块进行管理-沿用了家宝贝项目框架 一.首页模块(大概实现思路) 1 首页模块可分为三块.第一块在tableHeaderView上封装的图片轮播器.第二,三块是直接添加到tableView的cell上了. 2 八个按钮的位置是九宫格排布 分装的view高度是根据按钮个数来动态计算的.…...

国土资源局网站建设制度/怎么进行网络推广

一、自定义的必要性绘制的底层是强大的,我们所用的各端语言只是在现代UI追求的步伐中和用户喜好的交互中求同存异&#xff0c;抽取封装出自成个性风格的UI控件,当然面对万亿级别的客户各个平台的UI库出也不可能满足所有的客户需求,当然一门语言的可制定性也意味着其强大,几乎每…...

web个人博客网站/软件外包公司好不好

面试刷题 刷题我从常见Android基础知识面试题&#xff0c;刷到了Java面试题&#xff0c;继而攻坚Android高级面试题&#xff0c;以及突破学习Flutter相关热点技术面试题&#xff08;不是很难&#xff09;&#xff0c;最后总攻今年大厂面试真题总结。 Android基础知识 一、 A…...

常州哪家做网站便宜/seo引擎优化专员

不要自卑&#xff0c;去提升实力 互联网行业谁技术牛谁是爹 如果文章可以带给你能量&#xff0c;那是最好的事&#xff01;请相信自己 加油o~ 本人初学Python&#xff0c;只为熟悉语法编写&#xff0c;大神请勿理会 点击下面链接 Python经典编程100例习题汇总 题目描述&#…...

建站工作室网站源码/软广告经典例子

程序背景&#xff1a;也就是功能。(MFC 连接SQL server数据库) 假设一个出租DVD的小店需要一个简单的管理系统来管理出租影碟信息&#xff0c;需完成的主要功能如下&#xff1a; ⑴、按条件查询出租记录&#xff1b; ⑵、出租时添加租借记录&#xff1b; ⑶、租借人归还影碟时…...

aap手机网站建设/seo外包网络公司

委托以卖出价格成交的纳入“外盘”&#xff1b;委托以买入价格成交的纳入“内盘”。内盘外盘看盘技巧  1、在股价阴跌过程中&#xff0c;时常会发现外盘大、内盘小&#xff0c;此种情况并不表明股价一定会上涨。因为有些时候庄家用几笔抛单将股价打至较低位置&#xff0c;然后…...