当前位置: 首页 > news >正文

安装torch113、cuda116并运行demo【Transformer】

文章目录

    • 01. 导读
    • 02. 显卡驱动版本
    • 03. 创建环境、下载安装必要包
    • 04. 运行参考代码:

01. 导读

安装torch113、cuda116并运行demo【Transformer】

02. 显卡驱动版本

C:\Users\Administrator>nvidia-smi -l 10
Wed Sep 13 23:35:08 2023
±----------------------------------------------------------------------------+
| NVIDIA-SMI 512.89 Driver Version: 512.89 CUDA Version: 11.6 |
|-------------------------------±---------------------±---------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=++==============|
| 0 NVIDIA GeForce … WDDM | 00000000:01:00.0 On | N/A |
| N/A 73C P0 47W / N/A | 2210MiB / 4096MiB | 99% Default |
| | | N/A |
±------------------------------±---------------------±---------------------+

03. 创建环境、下载安装必要包

创建一个gpy38torch 的虚拟环境,并配置到改路径地址D:/AworkStation/Anaconda3/envs
conda create -p D:/AworkStation/Anaconda3/envs/gpy38torch python=3.8 【不知为何,管理员的windows身份了,仍然需要使用管理员身份运行】
pip install pandas transformers scipy ipykernel
pip install torch==1.13.0+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
python -m ipykernel install --user --name gpy38torch

04. 运行参考代码:

# -*- coding: utf-8 -*-'''
@Author   :   Corley Tang
@contact  :   cutercorleytd@gmail.com
@Github   :   https://github.com/corleytd
@Time     :   2023-08-14 22:22
@Project  :   Hands-on NLP with HuggingFace Transformers-sentiment_analysis_with_rbt3
使用3层RoBERTa模型进行评论情感分析
'''# 导入所需的库
import pandas as pd
import torch
from torch import optim
from torch.utils.data import Dataset, DataLoader, random_split
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import pipeline
from transformers import set_seed
# 超参数
device = 'cuda' if torch.cuda.is_available() else 'cpu'
seed = 20230814
batch_size = 8
max_length = 256
lr = 2e-5
num_epochs = 2
log_interval = 100
train_ratio = 0.8
model_path = 'hfl/rbt3'
model_path = r'D:\Auser\YZH\Pytorch深度学习入门与实战\Models\rbt3'# 设置随机种子、保证结果可复现
set_seed(seed)

# 1.构造数据
## (1)查看数据# 读取酒店评论数据:https://github.com/SophonPlus/ChineseNlpCorpus
path = 'ChnSentiCorp_htl_all.csv'  # 在我当前路径
data = pd.read_csv(path)
data.head()
# 查看缺失值
data.info()  # review有1条缺失值
# 删除缺失值
data.dropna(inplace=True)
data.info()  # 不存在缺失值

## (2)构造数据集
# 定义数据集类
class ReviewDataset(Dataset):def __init__(self, path):super().__init__()self.data = pd.read_csv(path)self.data.dropna(inplace=True)def __len__(self):return self.data.shape[0]def __getitem__(self, index):item = self.data.iloc[index]return item['review'], item['label']
# 实例化
dataset = ReviewDataset(path)for i in range(5):print(dataset[i])
# 划分数据集
sample_length = len(dataset)
train_length = int(train_ratio * sample_length)
train_set, valid_set = random_split(dataset, lengths=[train_length,sample_length - train_length])  # PyTorch从1.13及以后的版本中也支持lengths使用浮点数比例
len(train_set), len(valid_set)
# 查看训练集
for i in range(5):print(train_set[i])

# (3)创建DataLoader
# 创建Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path)def text_collate(batch):'''将单个样本数据组成的列表转换成一个批次的数据,通常会对数据进行一些处理:param batch: 一个批次数据的列表,一个元素为一条样本(包含输入和标签等):return: 一个批次的数据,可以是一个列表、元组或者字典'''texts, labels = [], []for item in batch:texts.append(item[0])labels.append(item[1])# 先将数据整理成一批、再进行分词,效率更高inputs = tokenizer(texts, max_length=max_length, padding='max_length', truncation=True, return_tensors='pt')inputs['labels'] = torch.tensor(labels)return (inputs)
# 构造DataLoader
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, collate_fn=text_collate)  # 自定义数据处理方式
valid_loader = DataLoader(valid_set, batch_size=batch_size * 2, collate_fn=text_collate)
# 查看验证集
next(enumerate(valid_loader))[1]  # 为字典形式

# 2.搭建模型
## (1)创建模型
model = AutoModelForSequenceClassification.from_pretrained(model_path)  # 选择带序列分类头的模型
model.to(device)
model

## (2)定义优化器
optimizer = optim.AdamW(model.parameters(), lr=lr)
optimizer
# 3.训练与预测
# 评估
def evaluate():total_correct = 0  # 计数model.eval()with torch.inference_mode():  # 在推断模式下优化内存使用和计算量,以提高推断性能(只允许进行前向传播操作,不支持反向传播或梯度计算)for batch in valid_loader:batch = {k: v.to(device) for k, v in batch.items()}output = model(**batch)preds = output.logits.argmax(-1)total_correct += (preds == batch['labels']).sum().item()return total_correct / len(valid_set)
# 训练
def train():global_step = 0  # 计数for epoch in range(num_epochs):model.train()for batch in train_loader:batch = {k: v.to(device) for k, v in batch.items()}output = model(**batch)output.loss.backward()optimizer.step()optimizer.zero_grad()if global_step % log_interval == 0:print(f'Epoch: {epoch}, Step: {global_step:4d}, Loss: {output.loss.item():.6f}')global_step += 1acc = evaluate()print(f'Epoch: {epoch}, Acc: {acc:.2%}')
# 开始训练
train()
# 手动实现预测
review = '总体来说还是不错,不足之处可以谅解,毕竟价格放在这里,要求不能太高。'
id2label = {0: '差评', 1: '好评'}
model.eval()
with torch.inference_mode():inputs = tokenizer(review, return_tensors='pt')inputs = {k: v.to(device) for k, v in inputs.items()}logits = model(**inputs).logitspred = logits.argmax(-1).item()print(f'评论:{review}\n预测结果:{id2label.get(pred)}')
# 借助pipeline
model.config.id2label = id2label
pipe = pipeline('text-classification', model=model, tokenizer=tokenizer, device=device)
# 进行评价
pipe(review)

相关文章:

安装torch113、cuda116并运行demo【Transformer】

文章目录 01. 导读02. 显卡驱动版本03. 创建环境、下载安装必要包04. 运行参考代码: 01. 导读 安装torch113、cuda116并运行demo【Transformer】 02. 显卡驱动版本 C:\Users\Administrator>nvidia-smi -l 10 Wed Sep 13 23:35:08 2023 ----------------------…...

基于scRNA-seq的GRN分析三阴性乳腺癌的肿瘤异质性

三阴性乳腺癌即TNBC是一种肿瘤异质性高的乳腺癌亚型。最近的研究表明,TNBC患者可能包含具有不同分子亚型的细胞。此外,基于scRNA-seq数据构建的GRN已经证明了对关键调控因子研究的重要性。作者使用scRNA-seq对TNBC患者的GRN进行了全面分析。从scRNA-seq数…...

Python:二进制文件实现等间隔取相同数据量并合并

举例:每3byte为一页,每3页为一wl。将所有wl的第一页/第二页/第三页分别合并为一个文件。 data b\x01\x02\x03\x04\x05\x06\x07\x08\x09\x01\x02\x03\x04\x05\x06\x07\x08\x09\x01\x02\x03\x04\x05\x06\x07\x08\x09\x01\x02\x03\x04\x05\x06\x07\x08\x0…...

python使用openvc库进行图像数据增强

以下是使用Python和OpenCV库实现图像数据增强的简单示例代码,其中包括常用的数据增强操作: import cv2 import numpy as np import os# 水平翻转 def horizontal_flip(image):return cv2.flip(image, 1)# 垂直翻转 def vertical_flip(image):return cv2…...

如何利用Api接口获取手机当前的网络位置信息

在移动互联网时代,手机定位已经成为了一个日常化的需求,无论是导航、社交还是打车等服务都需要获取手机的位置信息。而获取手机位置信息最基础的一步就是获取手机当前的网络位置信息,本文将介绍如何利用API接口获取手机当前的网络位置信息。 …...

vue-elementPlus自动按需导入和主题定制

elementPlus自动按需导入 装包 -> 配置 1. 装包(主包和两个插件包) $ npm install element-plus --save npm install -D unplugin-vue-components unplugin-auto-import 2. 配置 在vite.config.js文件中配置,配置完重启(n…...

idea中dataBase模板生成

controller.java.vm ##定义初始变量 #set($tableName $tool.append($tableInfo.name, "Controller")) ##设置回调 $!callback.setFileName($tool.append($tableName, ".java")) $!callback.setSavePath($tool.append($tableInfo.savePath, "/contro…...

pc端测试手机浏览器运行情况,主要是测试硬件功能

测试h5震动摇晃等功能时不方便测试,需要连电脑显示调试数据 方法: 1.需要手机下载谷歌浏览器,pc端用edge或这谷歌浏览器 2.手机打开USB调试,打开要测试的网页 3.pc端地址栏输入edge://inspect/#devices(这里用的edge浏…...

软件概要设计-架构真题(二十五)

软件概要设计包括软件设计的结构、确定系统功能模块及其相互关系,主要采用()描述程序的结构。(2018年) 程序流程图、PAD图和伪代码模块结构图、数据流图和盒图模块结构图、层次图和HIPO图程序流程图、数据流图和层次图…...

CSDN发文表情包整理

文章目录 简介部分Emoji表情符号简表人物自然物品地点符号 各种Emoji表情链接 简介 CSDN支持Markdown语法及Emoji表情,使用各种Emoji表情可以使得自己的博文更加生动多彩。一般有两种在支持Markdown的语法环境中添加Emoji表情:1.直接将表情包复制到文档…...

springBoot对接Apache POI 实现excel下载和上传

搭建springboot项目 此处可以参考 搭建最简单的SpringBoot项目_Steven-Russell的博客-CSDN博客 配置Apache POI 依赖 <dependency><groupId>org.apache.poi</groupId><artifactId>poi</artifactId><version>5.2.2</version> </…...

定积分的计算:牛顿-莱布尼茨公式

目录 牛顿-莱布尼茨公式 用C语言代码实现 利用换元积分法和分部积分法 利用奇偶性和周期性求积分 利用已有公式求积分 牛顿-莱布尼茨公式 牛顿-莱布尼茨公式&#xff08;Newton-Leibniz formula&#xff09;是微积分学中的基本定理之一&#xff0c;它反映了定积分与被积函…...

shell脚本之case 的用法

shell脚本之case case是Shell脚本中的一种控制流语句&#xff0c;它允许根据变量的值选择不同的执行路径。case语句的语法如下&#xff1a; case word in pattern [| pattern]...) command-list ;; pattern [| pattern]...) command-list ;; ... *) command-list ;; esa…...

第3章 helloworld 驱动实验(iTOP-RK3568开发板驱动开发指南 )

在学习C语言或者其他语言的时候&#xff0c;我们通常是打印一句“helloworld”来开启编程世界的大门。学习驱动程序编程亦可以如此&#xff0c;使用helloworld作为我们的第一个驱动程序。 接下来开始编写第一个驱动程序—helloworld。 3.1 驱动编写 本小节来编写一个最简单的…...

基于PyTorch使用LSTM实现新闻文本分类任务

本文参考 PyTorch深度学习项目实战100例 https://weibaohang.blog.csdn.net/article/details/127154284?spm1001.2014.3001.5501 文章目录 本文参考任务介绍做数据的导入 环境介绍导入必要的包介绍torchnet和keras做数据的导入给必要的参数命名加载文本数据数据前处理模型训…...

Flutter插件的制作和发布

Flutter制作插件有两种方式&#xff08;以下以android和ios为例&#xff09;&#xff1a; 目录 1.直接在主工程下的android和ios项目内写插件代码&#xff1a;2.创建独立Flutter Plugin项目&#xff0c;制作各端插件后&#xff0c;再引入项目&#xff1a;1. 创建Flutter Plugin…...

【JAVA】异常

作者主页&#xff1a;paper jie 的博客 本文作者&#xff1a;大家好&#xff0c;我是paper jie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 本文录入于《JAVASE语法系列》专栏&#xff0c;本专栏是针对于大学生&#xff0c;编程小白精心打造的。笔者用重金(时间和…...

合同矩阵充要条件

两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。 正惯性指数是矩阵正特征值个数&#xff0c;负惯性指数是矩阵负特征值个数。 即合同矩阵的充分必要条件是特征值的正负号个数相同。 证明&#xff1a; 本论证中的所有矩阵都是对称矩阵。 根据定义&#xff0c;若矩…...

数据分析三剑客之Pandas

1.引入 前面一篇文章我们介绍了numpy&#xff0c;但numpy的特长并不是在于数据处理&#xff0c;而是在它能非常方便地实现科学计算&#xff0c;所以我们日常对数据进行处理时用的numpy情况并不是很多&#xff0c;我们需要处理的数据一般都是带有列标签和index索引的&#xff0…...

Spring Boot自动装配原理

简介 Spring Boot是一个开源的Java框架&#xff0c;旨在简化Spring应用程序的搭建和开发。它通过自动装配的机制&#xff0c;大大减少了繁琐的配置工作&#xff0c;提高了开发效率。本文将深入探讨Spring Boot的自动装配原理。 自动装配的概述 在传统的Spring框架中&#xf…...

VMware Workstation虚拟机网络配置及配置自动启动

目录 一、网络配置二、配置自动启动1.VMware 中配置虚拟机自启动2.系统服务中配置 VMware 服务自启动 一、网络配置 本文将虚拟机 IP 与主机 IP 设置为同一个网段。 点击 “编辑” -> “虚拟网络编辑器(N)…”&#xff1a; 点击 “更改设置”&#xff1a; 将 VMnet0 设置…...

智能语音机器人竞品调研

一、腾讯云-智能客服机器人 链接地址&#xff1a;智能客服机器人_在线智能客服_智能客服解决方案 - 腾讯云 二、阿里云-智能语音机器人 链接地址&#xff1a;智能对话机器人-阿里云帮助中心 链接地址&#xff1a;智能外呼机器人的业务架构_智能外呼机器人-阿里云帮助中心 三、火…...

【操作系统】进程的概念、组成、特征

概念组成 程序&#xff1a;静态的放在磁盘&#xff08;外存&#xff09;里的可执行文件&#xff08;代码&#xff09; 作业&#xff1a;代码&#xff0b;数据&#xff0b;申请&#xff08;JCB&#xff09;&#xff08;外存&#xff09; 进程&#xff1a;程序的一次执行过程。 …...

大二第二周总结

问题&#xff1a; 想到了之前追的辩论赛&#xff0c;主题是“被误解是表达者的宿命”&#xff0c; 反方认为被误解不是表达者的宿命&#xff1a; 由于表达者表意含混造成误解的可能性是人力可控的&#xff0c;表达者可在真诚沟通的基础之上&#xff0c;根据对方反应不断调整…...

JDK、eclipse软件的安装

一、打开JDK安装包 二、复制路径 三、点击我的电脑&#xff0c;找到环境变量 四、新建环境 变量名&#xff1a;JAVA_HOME 变量值就是刚刚复制的路径 五、在path中建立新变量 双击path 打印以下文字 最后一直双击确定&#xff0c;安装环境完成。 六、双击eclipse 选择好安装…...

235. 二叉搜索树的最近公共祖先 Python

文章目录 一、题目描述示例 1示例 2 二、代码三、解题思路 一、题目描述 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个结点 p、q&#xff0c;最近公共祖先表示为一个结点 x&#xff0c;满足…...

Apollo介绍和入门

文章目录 Apollo介绍配置中心介绍apollo介绍主流配置中心功能特性对比 Apollo简介 入门简单的执行流程Apollo具体的执行流程Apollo对象执行流程分步执行流程 核心概念应用&#xff0c;环境&#xff0c;集群&#xff0c;命名空间企业部署方案灰度发布全量发布 配置发布的原理发送…...

一文看懂Oracle 19c OCM认证考试(需要Oracle OCP证书)

Oracle OCM的认证全称是Oracle Certified Master&#xff0c;是比OCP更高一级的认证&#xff0c;姚远老师的很多OCP学员都对OCM考试有兴趣&#xff0c;这里跟大家做个介绍。 OCM考试全部是上机的实操考试&#xff0c;没有笔试&#xff0c;要到Oracle原厂参加两天的考试。参加1…...

回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现PSO-SDAE粒子群优化堆叠去噪自编码器多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览…...

python自学

自学第一步 第一个简单的基础&#xff0c;向世界说你好 启动python 开始 print是打印输出的意思&#xff0c;就是输出引号内的内容。 标点符号必须要是英文的&#xff0c;因为他只认识英文的标点符号。 exit&#xff08;&#xff09;推出python。 我们创建一个文本文档&…...

吃什么补肾最快/关键词优化快速排名

#-----------------------认识/etc/passwd和/etc/shadow---------------------这两个文件可以说是linux系统中最重要的文件之一。如果没有这两个文件或者这两个文件出问题&#xff0c;则你是无法正常登录linux系统的。[rootlocalhost ~]# cat /etc/passwd | headroot:x:0:0:roo…...

北京网站建设签约/河南新闻头条最新消息

面试题57. 和为s的两个数字 难度简单18 输入一个递增排序的数组和一个数字s&#xff0c;在数组中查找两个数&#xff0c;使得它们的和正好是s。如果有多对数字的和等于s&#xff0c;则输出任意一对即可。 示例 1&#xff1a; 输入&#xff1a;nums [2,7,11,15], target 9 …...

一个论坛网站应该怎么做/百度我的订单app

今天在家里电脑重签名过的apk拿到公司来用装到模拟器上&#xff0c;运行Robotium测试用例时&#xff0c;报了如下错误&#xff0c;原本以为是工程里的activity名称和包名写错了呢&#xff0c;检查了一遍发现木有错误呀。。。。好吧&#xff0c;那我重新签名总可以吧&#xff0c…...

网站升级什么意思/个人建网站步骤

Oracle-数据类型与约束条件目录文章目录1、常用数据类型2、常用约束条件2.1、约束类型***后记*** &#xff1a;内容1、常用数据类型 数值型 number(n) -- n位整数number(m,n) -- 总共m位&#xff0c;n位小数位字符型 varchar2(n) -- 可变字符串 最多可以存储n位字符char(n)…...

做网站推广需要花多少钱/百度提交入口的注意事项

当label控件生成html后就变成span元素&#xff0c;等于操作span元素。 假设已经定义了一个span元素id是"sp"&#xff0c;则在Javascipt里面这样改变span元素显示的内容&#xff1a; document.getElementById("sp").innerText "hello, James"; …...

男女做姿抽插视频网站/网页设计主题推荐

&#x1f355;博客主页&#xff1a;️自信不孤单 &#x1f36c;文章专栏&#xff1a;C语言 &#x1f35a;代码仓库&#xff1a;破浪晓梦 &#x1f36d;欢迎关注&#xff1a;欢迎大家点赞收藏关注 程序环境和预处理 文章目录程序环境和预处理前言程序翻译环境和执行环境1. 翻译环…...