代码随想录算法训练营第51天 | ● 309.最佳买卖股票时机含冷冻期 ● 714.买卖股票的最佳时机含手续费
文章目录
- 前言
- 一、309.最佳买卖股票时机含冷冻期
- 二、714.买卖股票的最佳时机含手续费
- 总结
前言
买卖股票 完结;
一、309.最佳买卖股票时机含冷冻期
- 确定dp数组以及下标的含义
dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。
其实本题很多同学搞的比较懵,是因为出现冷冻期之后,状态其实是比较复杂度;
具体可以区分出如下四个状态:
- 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
- 不持有股票状态,这里就有两种卖出股票状态
- 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
- 状态三:今天卖出股票
- 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!
注意这里的每一个状态,例如状态一,是持有股票股票状态并不是说今天一定就买入股票,而是说保持买入股票的状态即:可能是前几天买入的,之后一直没操作,所以保持买入股票的状态。
- 确定递推公式
达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:
- 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
- 操作二:今天买入了,有两种情况
- 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
- 前一天是保持卖出股票的状态(状态二),dp[i - 1][1] - prices[i]
那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);
达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:
- 操作一:前一天就是状态二
- 操作二:前一天是冷冻期(状态四)
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:
昨天一定是持有股票状态(状态一),今天卖出
即:dp[i][2] = dp[i - 1][0] + prices[i];
达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:
昨天卖出了股票(状态三)
dp[i][3] = dp[i - 1][2];
- dp数组如何初始化
这里主要讨论一下第0天如何初始化。
如果是持有股票状态(状态一)那么:dp[0][0] = -prices[0],一定是当天买入股票。
保持卖出股票状态(状态二),这里其实从 「状态二」的定义来说 ,很难明确应该初始多少,这种情况我们就看递推公式需要我们给他初始成什么数值。
如果i为1,第1天买入股票,那么递归公式中需要计算 dp[i - 1][1] - prices[i] ,即 dp[0][1] - prices[1],那么大家感受一下 dp[0][1] (即第0天的状态二)应该初始成多少,只能初始为0。想一想如果初始为其他数值,是我们第1天买入股票后 手里还剩的现金数量是不是就不对了。
今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0。
- 确定遍历顺序
从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。
- 举例推导dp数组
代码:
class Solution {public int maxProfit(int[] prices) {if(prices == null || prices.length <2){return 0;}int[][] dp = new int[prices.length][4];//持有股票 前一天也持有+卖出后买入+冷冻期后买入//保持卖出股票 前一天卖出了+ 前一天是冷冻期//今天卖出股票 买入后卖出//冷冻期dp[0][0] = -prices[0];for(int i = 1;i<prices.length;i++){dp[i][0] = Math.max(dp[i-1][0],Math.max(dp[i-1][1]-prices[i],dp[i-1][3]-prices[i]));dp[i][1] = Math.max(dp[i-1][1],dp[i-1][3]);dp[i][2] = dp[i-1][0]+prices[i];dp[i][3] = dp[i-1][2];}return Math.max(dp[prices.length-1][1],Math.max(dp[prices.length-1][2],dp[prices.length-1][3]));}
}
二、714.买卖股票的最佳时机含手续费
这里重申一下dp数组的含义:
dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金
如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来
- 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
- 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来
- 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
- 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee
所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
class Solution {public int maxProfit(int[] prices, int fee) {int len =prices.length;int[][] dp = new int[len][2];dp[0][0] = -prices[0];for(int i=1;i<len;i++){//持股dp[i][0] = Math.max(dp[i-1][0],dp[i-1][1]-prices[i]);//不持股dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0]+prices[i]-fee);}return dp[len-1][1];// return Math.max(dp[len-1][0],dp[len-1][1]);}
}
总结

从买卖一次到买卖多次,从最多买卖两次到最多买卖k次,从冷冻期再到手续费,最后再来一个股票大总结,可以说对股票系列完美收官了。
相关文章:
代码随想录算法训练营第51天 | ● 309.最佳买卖股票时机含冷冻期 ● 714.买卖股票的最佳时机含手续费
文章目录 前言一、309.最佳买卖股票时机含冷冻期二、714.买卖股票的最佳时机含手续费总结 前言 买卖股票 完结; 一、309.最佳买卖股票时机含冷冻期 确定dp数组以及下标的含义 dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。 其实本题很多…...
李佳琦掉粉,国货品牌却从“商战大剧”走向“情景喜剧”
李佳琦直播间带货怼网友,“哪里贵了,国货很难的”“这么多年工资没涨,有没有认真工作?”本人事后垂泪道歉仍掉粉百万,但是闻风而来的国货品牌却迎来了一场流量盛宴。 从蜂花蹲点“捡”粉丝,上架三款79元洗…...
linux 下 C++ 与三菱PLC 通过MC Qna3E 二进制 协议进行交互
西门子plc 有snap7库 进行交互,并且支持c 而且跨平台。但是三菱系列PLC并没有现成的开源项目,没办法只能自己拼接,我这里实现了MC 协议 Qna3E 帧,并使用二进制进行交互。 #pragma once#include <stdio.h> #include <std…...
Spring基础(2w字---学习总结版)
目录 一、Spirng概括 1、什么是Spring 2、什么是容器 3、什么是IoC 4、模拟实现IoC 4.1、传统的对象创建开发 5、理解IoC容器 6、DI概括 二、创建Spring项目 1、创建spring项目 2、Bean对象 2.1、创建Bean对象 2.2、存储Bean对象(将Bean对象注册到容器…...
07 目标检测-YOLO的基本原理详解
一、YOLO的背景及分类模型 1、YOLO的背景 上图中是手机中的一个app,在任何场景下(工业场景,生活场景等等)都可以试试这个app和这个算法,这个app中间还有一个button,来调节app使用的模型的大小,更大的模型实时性差但精…...
每日一题 78子集(模板)
题目 78 给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例 1: 输入:nums [1,2,3] 输出:[[],[1],[2]…...
OpenCV之形态学操作
形态学操作包含以下操作: 腐蚀 (Erosion)膨胀 (Dilation)开运算 (Opening)闭运算 (Closing)形态梯度 (Morphological Gradient)顶帽 (Top Hat)黑帽(Black Hat) 其中腐蚀和膨胀操作是最基本的操作,其他操作由这两个操作变换而来。 腐蚀 用一个结构元素…...
设计模式:享元模式
设计模式:享元模式 什么是享元模式 首先我们需要简单了解一下什么是享元模式。享元模式(Flyweight Pattern):主要用于减少创建对象的数量,以减少内存占用和提高性能。享元模式的重点就在这个享字,通过一些共享技术来减少对象的创建ÿ…...
汉诺塔问题(包含了三台柱和四台柱)——C语言版本
目录 1. 什么是汉诺塔 2. 三座台柱的汉诺塔 2.1 思路 2.2 三座台柱的汉诺塔代码 3. 四座台柱的汉诺塔 3.1 思路 3.2 四座台柱的汉诺塔代码 1. 什么是汉诺塔 汉诺塔代码的功能:计算盘子的移动次数,由数学公式知,汉诺塔的盘子移动次数与…...
【实训项目】滴滴电竞APP
1.设计摘要 2013年国家体育总局决定成立一支由17人组成的电子竞技国家队,第四届亚室会中国电竞代表队 出战第四届亚洲室内和武道运动会。 2014年1月13日CCTV5《体育人间》播放英雄联盟皇族战队的纪录片。 在2015到2019年间,我国电竞战队取得的无数值得…...
C++核心编程--类篇
C核心编程 1.内存分区模型 C程序在执行时,将内存大方向分为4个区域 意义:不同区域存放数据,赋予不同的生命周期,更能灵活编程 代码区:存放函数体的二进制代码,由操作系统进行管理的全局区:存放…...
java中用feign远程调用注解FeignClient的时候不重写Encoder和Decoder怎么格式不对呢?
如果在使用 Feign 进行远程调用时,没有重写 Encoder 和 Decoder,但仍然遇到格式不对的问题,可能是由于以下原因之一: 服务端返回的数据格式与客户端期望的格式不匹配:Feign 默认使用基于 Jackson 的 Encoder 和 Decode…...
记录使用Docker Compose 部署《XAPI项目》遇道的问题及解决方案
《XAPI项目》:GitHub仓库(勿打🚫小破站一个) 这篇文档,主要内容是记录使用Docker Compose 部署《XAPI项目》遇道的问题及解决方案 目录 📚 本地MySQL数据如何导入到容器内的MySQL中❎ 解决报错:…...
腾讯云OCR实践 - 降低客服财务运营成本
一、 前言: 随着图片时代的飞速发展,大量的文字内容为了优化排版和表现效果,都采用了图片的形式发布和存储,这为内容的传播和安全性带来了很大的便利,需要做重复性劳动。 OCR文字扫描工具也逐渐的应运而生,…...
springboot+vue上传图片
这里是一个简单的示例,演示了如何在Spring Boot中从Vue.js上传图像: 1.前端Vue.js代码: <template><div><input type"file" change"handleFileUpload"><button click"uploadImage">…...
高压电缆护层接地环流及温度在线监测系统
高压电缆的金属护层是电缆的重要组成部分,当缆芯通过电流时,会在金属护层上产生环流,外护套的绝缘状态差、接地不良、金属护层接地方式不正确等等都会引起护套环流异常现象,严重威胁电缆运行安全。 当电缆金属护层环流出现异常时…...
无涯教程-JavaScript - IPMT函数
描述 IPMT函数根据定期,固定的还款额和固定的利率返回给定投资期限内的利息支付。 语法 IPMT (rate, per, nper, pv, [fv], [type])争论 Argument描述Required/OptionalRateThe interest rate per period.RequiredPerThe period for which you want to find the interest a…...
【EI会议征稿】第三届机械自动化与电子信息工程国际学术会议(MAEIE 2023)
第三届机械自动化与电子信息工程国际学术会议(MAEIE 2023) 第三届机械自动化与电子信息工程国际学术会议(MAEIE 2023)将于2023年12月15-17日在江苏南京举行。本会议通过与业内众多平台、社会各团体协力,聚集机械自动…...
手写实现LRN局部响应归一化算子
1、重写算子的需求 芯片推理过程中遇到很多算子计算结果不对的情况,原因是封装的算子会在某些特殊情况下计算超限,比如输入shape特别大或者数值特别大时,LRN算子计算会出现NAN值,所以需要重写算子。先对输入数据做一个预处理&…...
朗思科技数字员工通过统信桌面操作系统兼容性互认认证
近日,朗思科技数字员工与统信桌面操作系统V20进行了兼容互认,针对上述产品的功能、兼容性方面,通过共同严格测试表明——朗思科技数字员工在统信桌面操作系统 V20上整体运行稳定,满足功能及兼容性测试要求。 北京朗思智能科技有限…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...
