当前位置: 首页 > news >正文

豆瓣图书评分数据的可视化分析

亿牛云代理.jpg

导语

豆瓣是一个提供图书、电影、音乐等文化产品的社区平台,用户可以在上面发表自己的评价和评论,形成一个丰富的文化数据库。本文将介绍如何使用爬虫技术获取豆瓣图书的评分数据,并进行可视化分析,探索不同类型、不同年代、不同地区的图书的评分特征和规律。

概述

本文的主要步骤如下:

  • 使用scrapy框架编写爬虫程序,从豆瓣图书网站抓取图书的基本信息和评分数据,保存为csv格式的文件。
  • 使用亿牛云爬虫代理服务,提高爬虫效率和稳定性,避免被豆瓣网站屏蔽或封禁。
  • 使用pandas库对爬取的数据进行清洗和处理,提取出需要的字段和特征。
  • 使用matplotlib库对处理后的数据进行可视化分析,绘制各种类型的图表,展示不同维度的评分分布和关系。

正文

爬虫程序

首先,我们需要编写一个爬虫程序,从豆瓣图书网站抓取图书的基本信息和评分数据。我们使用scrapy框架来实现这个功能,scrapy是一个强大而灵活的爬虫框架,可以方便地定义爬虫规则和处理数据。我们需要定义一个Spider类,继承自scrapy.Spider类,并重写以下方法:

  • start_requests:该方法返回一个可迭代对象,包含了爬虫开始时要访问的请求对象。我们可以从豆瓣图书首页开始,获取所有分类的链接,并构造请求对象。
  • parse:该方法负责处理start_requests返回的请求对象的响应,并解析出需要的数据或者进一步的请求。我们可以使用scrapy自带的选择器或者BeautifulSoup等第三方库来解析HTML文档,提取出图书列表页的链接,并构造请求对象。
  • parse_book:该方法负责处理parse返回的请求对象的响应,并解析出图书详情页的数据。我们可以使用同样的方式来提取出图书的基本信息和评分数据,并将其保存为字典格式。
  • close:该方法在爬虫结束时被调用,我们可以在这里将抓取到的数据保存为csv格式的文件。

为了提高爬虫效率和稳定性,我们还需要使用亿牛云爬虫代理服务,该服务提供了大量高质量的代理IP地址,可以帮助我们避免被豆瓣网站屏蔽或封禁。我们只需要在settings.py文件中设置代理服务器的域名、端口、用户名和密码,以及启用中间件HttpProxyMiddleware即可。

首先配置爬虫代理,你可以按照以下步骤在Scrapy项目的settings.py文件中进行配置:
确保已经安装了Scrapy以及相关依赖。然后,打开你的Scrapy项目的settings.py文件,并添加以下配置:

# 启用HttpProxyMiddleware中间件
DOWNLOADER_MIDDLEWARES = {'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 1,
}# 设置亿牛云 爬虫代理服务器的配置
HTTPPROXY_AUTH_ENCODING = 'utf-8'  # 编码格式# 亿牛云 爬虫代理服务器的域名、端口、用户名和密码
HTTPPROXY_HOST = 'www.16yun.cn'
HTTPPROXY_PORT = 12345
HTTPPROXY_USER = '16YUN'
HTTPPROXY_PASS = '16IP'

以下是爬虫程序的代码:

# -*- coding: utf-8 -*-
import scrapy
import csvclass DoubanSpider(scrapy.Spider):name = 'douban'allowed_domains = ['book.douban.com']start_urls = ['https://book.douban.com/']# 定义保存数据的列表data = []def start_requests(self):# 从豆瓣图书首页开始yield scrapy.Request(url=self.start_urls[0], callback=self.parse)def parse(self, response):# 解析首页,获取所有分类的链接categories = response.xpath('//div[@class="article"]/div[@class="indent"]/table//a')for category in categories:# 构造分类页面的请求对象url = category.xpath('./@href').get()yield scrapy.Request(url=url, callback=self.parse_book)def parse_book(self, response):# 解析分类页面,获取图书列表books = response.xpath('//li[@class="subject-item"]')for book in books:# 构造图书详情页的请求对象url = book.xpath('./div[@class="info"]/h2/a/@href').get()yield scrapy.Request(url=url, callback=self.parse_detail)# 获取下一页的链接,如果存在则继续爬取next_page = response.xpath('//span[@class="next"]/a/@href')if next_page:url = next_page.get()yield scrapy.Request(url=url, callback=self.parse_book)def parse_detail(self, response):# 解析图书详情页,获取图书的基本信息和评分数据item = {}item['title'] = response.xpath('//h1/span/text()').get() # 标题item['author'] = response.xpath('//span[contains(text(),"作者")]/following-sibling::a/text()').get() # 作者item['publisher'] = response.xpath('//span[contains(text(),"出版社")]/following-sibling::text()').get() # 出版社item['pub_date'] = response.xpath('//span[contains(text(),"出版年")]/following-sibling::text()').get() # 出版年item['price'] = response.xpath('//span[contains(text(),"定价")]/following-sibling::text()').get() # 定价item['rating'] = response.xpath('//strong/text()').get() # 评分item['rating_num'] = response.xpath('//a[contains(@href,"rating")]/span/text()').get() # 评分人数item['tags'] = response.xpath('//div[@id="db-tags-section"]/div[@class="indent"]/span/a/text()').getall() # 标签# 将数据添加到列表中self.data.append(item)def close(self, spider, reason):# 爬虫结束时,将数据保存为csv格式的文件with open('douban_books.csv', 'w', encoding='utf-8', newline='') as f:writer = csv.DictWriter(f, fieldnames=self.data[0].keys())writer.writeheader()writer.writerows(self.data)

数据清洗和处理

接下来,我们需要对爬取的数据进行清洗和处理,提取出需要的字段和特征。我们使用pandas库来实现这个功能,pandas是一个强大而灵活的数据分析和处理库,可以方便地读取、操作和转换数据。我们需要做以下几个步骤:

  • 读取csv文件,将数据转换为DataFrame对象。
  • 去除空值和重复值,保证数据的完整性和唯一性。
  • 对部分字段进行类型转换,如将评分和评分人数转换为数值类型,将出版年转换为日期类型。
  • 对部分字段进行拆分或合并,如将作者拆分为中文作者和外文作者,将标签合并为一个字符串。
  • 对部分字段进行分组或分类,如根据评分区间划分为高分、中等、低分三类,根据出版年划分为不同的年代。

以下是数据清洗和处理的代码:

# -*- coding: utf-8 -*-
import pandas as pd# 读取csv文件,将数据转换为DataFrame对象
df = pd.read_csv('douban_books.csv')# 去除空值和重复值,保证数据的完整性和唯一性
df.dropna(inplace=True)
df.drop_duplicates(inplace=True)# 对部分字段进行类型转换,如将评分和评分人数转换为数值类型,将出版年转换为日期类型
df['rating'] = pd.to_numeric(df['rating'])
df['rating_num'] = pd.to_numeric(df['rating_num'])
df['pub_date'] = pd.to_datetime(df['pub_date'])# 对部分字段进行拆分或合并,如将作者拆分为中文作者和外文作者,将标签合并为一个字符串 
df[‘tags’] = df[‘tags’].apply(lambda x:,.join(x))# 对部分字段进行分组或分类,如根据评分区间划分为高分、中等、低分三类,根据出版年划分为不同的年代
df[‘rating_level’] = pd.cut(df[‘rating’], bins=[0, 7, 8.5, 10], labels=[‘低分’, ‘中等’, ‘高分’]) 
df[‘pub_year’] = df[‘pub_date’].dt.year 
df[‘pub_decade’] = (df[‘pub_year’] // 10) * 10
#数据清洗和处理完成,保存为新的csv文件
df.to_csv(‘douban_books_cleaned.csv’, index=False)

数据可视化分析

最后,我们需要对处理后的数据进行可视化分析,绘制各种类型的图表,展示不同维度的评分分布和关系。我们使用matplotlib库来实现这个功能,matplotlib是一个强大而灵活的数据可视化库,可以方便地创建各种风格和格式的图表。我们需要做以下几个步骤:

  • 导入matplotlib库,并设置中文显示和风格。
  • 读取清洗后的csv文件,将数据转换为DataFrame对象。
  • 使用matplotlib的子模块pyplot来绘制各种图表,如直方图、饼图、箱线图、散点图等。
  • 使用matplotlib的子模块axes来调整图表的标题、标签、刻度、图例等属性。
  • 使用matplotlib的子模块figure来保存图表为图片文件。

以下是数据可视化分析的代码:

# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import pandas as pd# 导入matplotlib库,并设置中文显示和风格
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置中文显示
plt.rcParams['axes.unicode_minus'] = False # 设置负号显示
plt.style.use('ggplot') # 设置风格# 读取清洗后的csv文件,将数据转换为DataFrame对象
df = pd.read_csv('douban_books_cleaned.csv')# 绘制直方图,显示不同评分区间的图书数量
plt.figure(figsize=(8, 6)) # 设置画布大小
plt.hist(df['rating'], bins=20, color='steelblue', edgecolor='k') # 绘制直方图
plt.xlabel('评分') # 设置x轴标签
plt.ylabel('数量') # 设置y轴标签
plt.title('豆瓣图书评分直方图') # 设置标题
plt.savefig('rating_hist.png') # 保存图片# 绘制饼图,显示不同评分等级的图书占比
plt.figure(figsize=(8, 6)) # 设置画布大小
rating_level_counts = df['rating_level'].value_counts() # 计算不同评分等级的图书数量
plt.pie(rating_level_counts, labels=rating_level_counts.index, autopct='%.2f%%', colors=['limegreen', 'gold', 'tomato']) # 绘制饼图
plt.title('豆瓣图书评分等级饼图') # 设置标题
plt.savefig('rating_level_pie.png') # 保存图片# 绘制箱线图,显示不同年代的图书评分分布
plt.figure(figsize=(8, 6)) # 设置画布大小
decades = df['pub_decade'].unique() # 获取不同年代的列表
decades.sort() # 对年代进行排序
ratings_by_decade = [df[df['pub_decade'] == decade]['rating'] for decade in decades] # 获取每个年代对应的评分列表
plt.boxplot(ratings_by_decade, labels=decades) # 绘制箱线图
plt.xlabel('年代') # 设置x轴标签
plt.ylabel('评分') # 设置y轴标签
plt.title('豆瓣图书不同年代评分箱线图') # 设置标题
plt.savefig('rating_by_decade_box.png') # 保存图片# 绘制散点图,显示评分和评分人数的关系
plt.figure(figsize=(8, 6)) # 设置画布大小
plt.scatter(df['rating'], df['rating_num'], color='steelblue', alpha=0.5) # 绘制散点图
plt.xlabel('评分') # 设置x轴标签
plt.ylabel('评分人数') # 设置y轴标签
plt.title('豆瓣图书评分和评分人数散点图') # 设置标题
plt.savefig('rating_num_scatter.png') # 保存图片

结语

本文介绍了如何使用爬虫技术获取豆瓣图书的评分数据,并进行可视化分析,探索不同类型、不同年代、不同地区的图书的评分特征和规律。通过本文,我们可以学习到以下几点:

  • 如何使用scrapy框架编写爬虫程序,从豆瓣图书网站抓取图书的基本信息和评分数据,保存为csv格式的文件。
  • 如何使用亿牛云爬虫代理服务,提高爬虫效率和稳定性,避免被豆瓣网站屏蔽或封禁。
  • 如何使用pandas库对爬取的数据进行清洗和处理,提取出需要的字段和特征。
  • 如何使用matplotlib库对处理后的数据进行可视化分析,绘制各种类型的图表,展示不同维度的评分分布和关系。

希望本文能够对你有所帮助,如果你对爬虫技术或者数据可视化有兴趣,可以继续深入学习和探索。谢谢你的阅读!

相关文章:

豆瓣图书评分数据的可视化分析

导语 豆瓣是一个提供图书、电影、音乐等文化产品的社区平台,用户可以在上面发表自己的评价和评论,形成一个丰富的文化数据库。本文将介绍如何使用爬虫技术获取豆瓣图书的评分数据,并进行可视化分析,探索不同类型、不同年代、不同…...

SpringBoot整合Easy-ES操作演示文档

文章目录 SpringBoot整合Easy-ES操作演示文档1 概述及特性1.1 官网1.2 主要特性 2 整合配置2.1 导入POM2.2 Yaml配置2.3 EsMapperScan 注解扫描2.4 配置Entity2.5 配置Mapper 3 基础操作3.1 批量保存3.2 数据更新3.3 数据删除3.4 组合查询3.5 高亮查询3.6 统计查询 4 整合异常4…...

IDEA控制台取消悬浮全局配置SpringBoot配置https

IDEA控制台取消悬浮 idea 全局配置 SpringBoot(Tomcat) 配置https,同时支持http 利用JDK生成证书 keytool -genkey -alias httpsserver -keyalg RSA -keysize 2048 -keystore server.p12 -validity 3650配置类 Configuration public class TomcatConfig {Value(&quo…...

MySQL8--my.cnf配置文件的设置

原文网址:MySQL8--my.cfg配置文件的设置_IT利刃出鞘的博客-CSDN博客 简介 本文介绍MySQL8的my.cnf的配置。 典型配置 [client] default-character-setutf8mb4[mysql] default-character-setutf8mb4[mysqld] #服务端口号 默认3306 port3306datadir /work/docker…...

Qt基于paintEvent自定义CharView

Qt基于paintEvent自定义CharView 鼠标拖动&#xff0c;缩放&#xff0c;区域缩放&#xff0c; 针对x轴&#xff0c;直接上代码 charview.h #ifndef CHARVIEW_H #define CHARVIEW_H#include <QWidget> #include <QPainter> #include <QPaintEvent> #inclu…...

Mac FoneLab for Mac:轻松恢复iOS数据,专业工具助力生活

如果你曾经不小心删除了重要的iOS数据&#xff0c;或者因为各种原因丢失了这些数据&#xff0c;那么你一定知道这种痛苦。现在&#xff0c;有一个名为Mac FoneLab的Mac应用程序&#xff0c;它专门设计用于恢复iOS数据&#xff0c;这可能是你的救星。 Mac FoneLab for Mac是一种…...

代码随想录二刷day30

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 一、力扣332. 重新安排行程二、力扣51. N 皇后三、力扣37. 解数独 一、力扣332. 重新安排行程 class Solution {private LinkedList<String> res;private Li…...

工业检测 ocr

采用OpenCV和深度学习的钢印识别_菲斯奇的博客-CSDN博客采用OpenCV和深度学习的钢印识别[这个帖子标题党了很久&#xff0c;大概9月初立贴&#xff0c;本来以为比较好做&#xff0c;后来有事情耽搁了&#xff0c;直到现在才有了一些拿得出手的东西。肯定不会太监的。好&#xf…...

LVS负载均衡群集

这里写目录标题 LVS负载均衡群集一.集群cluster与分布式1.特点&#xff1a;2.类型1&#xff09;负载均衡群集 LB2&#xff09;高可用群集 HA3&#xff09;高性能运输群集 HPC 3.分布式1&#xff09;特点 二.LVS1.lvs的工作原理2.lvs的三种工作模式1&#xff09;NAT 地址转换2&a…...

安卓截屏;前台服务

private var mediaProjectionManager: MediaProjectionManager? nullval REQUEST_MEDIA_PROJECTION 10001private var isstartservice true//启动MediaService服务fun startMediaService() {if (isstartservice) {startService(Intent(this, MediaService::class.java))iss…...

C++ PrimerPlus 复习 第八章 函数探幽

第一章 命令编译链接文件 make文件 第二章 进入c 第三章 处理数据 第四章 复合类型 &#xff08;上&#xff09; 第四章 复合类型 &#xff08;下&#xff09; 第五章 循环和关系表达式 第六章 分支语句和逻辑运算符 第七章 函数——C的编程模块&#xff08;上&#xff…...

JavaScript-Ajax-axios-Xhr

JS的异步请求 主要有xhr xmlHttpRequest 以及axios 下面给出代码以及详细用法&#xff0c;都写在了注释里 直接拿去用即可 测试中默认的密码为123456 账号admin 其他一律返回登录失败 代码实例 <!DOCTYPE html> <html lang"en"> <head><…...

怎样查看kafka写数据送到topic是否成功

要查看 Kafka 写数据是否成功送到主题&#xff08;topic&#xff09;&#xff0c;可以通过以下几种方法来进行确认&#xff1a; Kafka 生产者确认机制&#xff1a;Kafka 提供了生产者的确认机制&#xff0c;您可以在创建生产者时设置 acks 属性来控制确认级别。常见的确认级别包…...

腾讯mini项目-【指标监控服务重构】2023-08-16

今日已办 v1 验证 StageHandler 在处理消息时是否为单例&#xff0c;【错误尝试】 type StageHandler struct { }func (s StageHandler) Middleware1(h message.HandlerFunc) message.HandlerFunc {return func(msg *message.Message) ([]*message.Message, error) {log.Log…...

PTA:7-3 两个递增链表的差集

^两个递增链表的差集 题目输入样例输出样例 代码 题目 输入样例 5 1 3 5 7 9 3 2 3 5输出样例 3 1 7 9代码 #include <iostream> #include <list> #include <unordered_set> using namespace std; int main() {int n1, n2;cin >> n1;list<int&g…...

智能合约漏洞案例,DEI 漏洞复现

智能合约漏洞案例&#xff0c;DEI 漏洞复现 1. 漏洞简介 https://twitter.com/eugenioclrc/status/1654576296507088906 2. 相关地址或交易 https://explorer.phalcon.xyz/tx/arbitrum/0xb1141785b7b94eb37c39c37f0272744c6e79ca1517529fec3f4af59d4c3c37ef 攻击交易 3. …...

Attention is all you need 论文笔记

该论文引入Transformer&#xff0c;主要核心是自注意力机制&#xff0c;自注意力&#xff08;Self-Attention&#xff09;机制是一种可以考虑输入序列中所有位置信息的机制。 RNN介绍 引入RNN为了更好的处理序列信息&#xff0c;比如我 吃 苹果&#xff0c;前后的输入之间是有…...

Hdoop伪分布式集群搭建

文章目录 Hadoop安装部署前言1.环境2.步骤3.效果图 具体步骤&#xff08;一&#xff09;前期准备&#xff08;1&#xff09;ping外网&#xff08;2&#xff09;配置主机名&#xff08;3&#xff09;配置时钟同步&#xff08;4&#xff09;关闭防火墙 &#xff08;二&#xff09…...

java临时文件

临时文件 有时候&#xff0c;我们程序运行时需要产生中间文件&#xff0c;但是这些文件只是临时用途&#xff0c;并不做长久保存。 我们可以使用临时文件&#xff0c;不需要长久保存。 public static File createTempFile(String prefix, String suffix)prefix 前缀 suffix …...

C++中的<string>头文件 和 <cstring>头文件简介

C中的<string>头文件 和 <cstring>头文件简介 在C中<string> 和 <cstring> 是两个不同的头文件。 <string> 是C标准库中的头文件&#xff0c;定义了一个名为std::string的类&#xff0c;提供了对字符串的操作如size()、length()、empty() 及字…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...