ELK 处理 Spring Boot 日志
ELK 处理 Spring Boot 日志,妙啊!
来源:ibm.com/developerworks/cn/java
/build-elk-and-use-it-for-springboot
-and-nginx/index.html
-
ELK 简介
-
Logstash
-
Elasticsearch
-
Kibana
-
ELK 实现方案
-
ELK 平台搭建
-
安装 Logstash
-
安装 Elasticsearch
-
安装 Kibana
-
在 Spring Boot 中使用 ELK
-
修改并部署 Spring Boot 项目
-
配置 Shipper 角色 Logstash
-
配置 Indexer 角色 Logstash
-
查看效果
-
在 Nginx 中使用 ELK
-
ELK 启动
-
结束语
-
参考资源
在排查线上异常的过程中,查询日志总是必不可缺的一部分。现今大多采用的微服务架构,日志被分散在不同的机器上,使得日志的查询变得异常困难。工欲善其事,必先利其器。如果此时有一个统一的实时日志分析平台,那可谓是雪中送碳,必定能够提高我们排查线上问题的效率。本文带您了解一下开源的实时日志分析平台 ELK 的搭建及使用。
ELK 简介
ELK 是一个开源的实时日志分析平台,它主要由 Elasticsearch、Logstash 和 Kibana 三部分组成。
Logstash
Logstash 主要用于收集服务器日志,它是一个开源数据收集引擎,具有实时管道功能。Logstash 可以动态地将来自不同数据源的数据统一起来,并将数据标准化到您所选择的目的地。
Logstash 收集数据的过程主要分为以下三个部分:
-
输入:数据(包含但不限于日志)往往都是以不同的形式、格式存储在不同的系统中,而 Logstash 支持从多种数据源中收集数据(File、Syslog、MySQL、消息中间件等等)。
-
过滤器:实时解析和转换数据,识别已命名的字段以构建结构,并将它们转换成通用格式。
-
输出:Elasticsearch 并非存储的唯一选择,Logstash 提供很多输出选择。
Elasticsearch
Elasticsearch (ES)是一个分布式的 Restful 风格的搜索和数据分析引擎,它具有以下特点:
-
查询:允许执行和合并多种类型的搜索 — 结构化、非结构化、地理位置、度量指标 — 搜索方式随心而变。
-
分析:Elasticsearch 聚合让您能够从大处着眼,探索数据的趋势和模式。
-
速度:很快,可以做到亿万级的数据,毫秒级返回。
-
可扩展性:可以在笔记本电脑上运行,也可以在承载了 PB 级数据的成百上千台服务器上运行。
-
弹性:运行在一个分布式的环境中,从设计之初就考虑到了这一点。
-
灵活性:具备多个案例场景。支持数字、文本、地理位置、结构化、非结构化,所有的数据类型都欢迎。
Kibana
Kibana 可以使海量数据通俗易懂。它很简单,基于浏览器的界面便于您快速创建和分享动态数据仪表板来追踪 Elasticsearch 的实时数据变化。其搭建过程也十分简单,您可以分分钟完成 Kibana 的安装并开始探索 Elasticsearch 的索引数据 — 没有代码、不需要额外的基础设施。
对于以上三个组件在《ELK 协议栈介绍及体系结构》一文中有具体介绍,这里不再赘述。
在 ELK 中,三大组件的大概工作流程如下图所示,由 Logstash 从各个服务中采集日志并存放至 Elasticsearch 中,然后再由 Kiabana 从 Elasticsearch 中查询日志并展示给终端用户。
图 1. ELK 的大致工作流程
基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
项目地址:https://github.com/YunaiV/ruoyi-vue-pro
视频教程:https://doc.iocoder.cn/video/
ELK 实现方案
通常情况下我们的服务都部署在不同的服务器上,那么如何从多台服务器上收集日志信息就是一个关键点了。本篇文章中提供的解决方案如下图所示:
图 2. 本文提供的 ELK 实现方案
如上图所示,整个 ELK 的运行流程如下:
-
在微服务(产生日志的服务)上部署一个 Logstash,作为 Shipper 角色,主要负责对所在机器上的服务产生的日志文件进行数据采集,并将消息推送到 Redis 消息队列。
-
另用一台服务器部署一个 Indexer 角色的 Logstash,主要负责从 Redis 消息队列中读取数据,并在 Logstash 管道中经过 Filter 的解析和处理后输出到 Elasticsearch 集群中存储。
-
Elasticsearch 主副节点之间数据同步。
-
单独一台服务器部署 Kibana 读取 Elasticsearch 中的日志数据并展示在 Web 页面。
通过这张图,相信您已经大致清楚了我们将要搭建的 ELK 平台的工作流程,以及所需组件。下面就让我们一起开始搭建起来吧。
基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能
项目地址:https://github.com/YunaiV/yudao-cloud
视频教程:https://doc.iocoder.cn/video/
ELK 平台搭建
本节主要介绍搭建 ELK 日志平台,包括安装 Indexer 角色的 Logstash,Elasticsearch 以及 Kibana 三个组件。完成本小节,您需要做如下准备:
-
一台 Ubuntu 机器或虚拟机,作为入门教程,此处省略了 Elasticsearch 集群的搭建,且将 Logstash(Indexer)、Elasticsearch 以及 Kibana 安装在同一机器上。
-
在 Ubuntu 上安装 JDK,注意 Logstash 要求 JDK 在 1.7 版本以上,具体在 Ubuntu 上安装 JDK 的方法,可以参考 “在 Ubuntu 上安装 JDK1.8” 这篇文字。
-
Logstash、Elasticsearch、Kibana 安装包,您可以在此页面下载。
安装 Logstash
1、解压压缩包:
tar -xzvf logstash-7.3.0.tar.gz
2、简单用例测试,进入到解压目录,并启动一个将控制台输入输出到控制台的管道。
cd logstash-7.3.0 elk@elk:~/elk/logstash-7.3.0$ bin/logstash -e 'input { stdin {} } output { { stdout {} } }'
看到如下日志就意味着 Logstash 启动成功。
图 3. Logstash 启动成功日志
3、在控制台输入,看到如下效果代表 Logstash 安装成功。
Hello Logstash
清单 1. 验证 Logstash 是否启动成功
Hello Logstash { "@timestamp" => 2019-08-10T16:11:10.040Z, "host" => "elk", "@version" => "1", "message" => "Hello Logstash" }
安装 Elasticsearch
1、解压安装包:
tar -xzvf elasticsearch-7.3.0-linux-x86_64.tar.gz
2、启动 Elasticsearch:
cd elasticsearch-7.3.0/``bin/elasticsearch
在启动 Elasticsearch 的过程中我遇到了两个问题在这里列举一下,方便大家排查。
问题一 :内存过小,如果您的机器内存小于 Elasticsearch 设置的值,就会报下图所示的错误。解决方案是,修改 elasticsearch-7.3.0/config/jvm.options
文件中的如下配置为适合自己机器的内存大小,若修改后还是报这个错误,可重新连接服务器再试一次。
图 4. 内存过小导致 Elasticsearch 启动报错
问题二 ,如果您是以 root
用户启动的话,就会报下图所示的错误。解决方案自然就是添加一个新用户启动 Elasticsearch,至于添加新用户的方法网上有很多,这里就不再赘述。
图 5. Root 用户启动 Elasticsearch 报错
3、启动成功后,另起一个会话窗口执行命令,如果出现如下结果,则代表 Elasticsearch 安装成功。
curl http://localhost:9200
清单 2. 检查 Elasticsearch 是否启动成功
elk@elk:~$ curl http://localhost:9200 { "name" : "elk", "cluster_name" : "elasticsearch", "cluster_uuid" : "hqp4Aad0T2Gcd4QyiHASmA", "version" : { "number" : "7.3.0", "build_flavor" : "default", "build_type" : "tar", "build_hash" : "de777fa", "build_date" : "2019-07-24T18:30:11.767338Z", "build_snapshot" : false, "lucene_version" : "8.1.0", "minimum_wire_compatibility_version" : "6.8.0", "minimum_index_compatibility_version" : "6.0.0-beta1" }, "tagline" : "You Know, for Search" }
安装 Kibana
1、解压安装包:
tar -xzvf kibana-7.3.0-linux-x86_64.tar.gz
2、修改配置文件,主要指定 Elasticsearch 的信息。
config/kibana.yml
清单 3. Kibana 配置信息
#Elasticsearch主机地址 elasticsearch.hosts: "http://ip:9200" # 允许远程访问 server.host: "0.0.0.0" # Elasticsearch用户名 这里其实就是我在服务器启动Elasticsearch的用户名 elasticsearch.username: "es" # Elasticsearch鉴权密码 这里其实就是我在服务器启动Elasticsearch的密码 elasticsearch.password: "es"
3、启动 Kibana:
cd kibana-7.3.0-linux-x86_64/bin``./kibana
4、在浏览器中访问,若出现以下界面,则表示 Kibana 安装成功。
http://ip:5601
图 6. Kibana 启动成功界面
ELK 日志平台安装完成后,下面我们就将通过具体的例子来看下如何使用 ELK,下文将分别介绍如何将 Spring Boot 日志和 Nginx 日志交由 ELK 分析。
在 Spring Boot 中使用 ELK
首先我们需要创建一个 Spring Boot 的项目,之前我写过一篇文章介绍如何使用 AOP 来统一处理 Spring Boot 的 Web 日志,本文的 Spring Boot 项目就建立在这篇文章的基础之上,源码可以点击这里获取。
修改并部署 Spring Boot 项目
1、在项目 resources
目录下创建 spring-logback.xml
配置文件。
清单 4. Spring Boot 项目 Logback 的配置
<?xml version="1.0" encoding="UTF-8"?> <configuration debug="false"> <contextName>Logback For demo Mobile</contextName> <property name="LOG_HOME" value="/log" /> <springProperty scope="context" name="appName" source="spring.application.name" defaultValue="localhost" /> ... <appender name="ROLLING_FILE" class="ch.qos.logback.core.rolling.RollingFileAppender"> ... <encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder"> <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{25} ${appName} -%msg%n</pattern> </encoder> ... </appender> ... </configuration>
以上内容省略了很多内容,您可以在源码中获取。在上面的配置中我们定义了一个名为 ROLLING_FILE
的 Appender
往日志文件中输出指定格式的日志。而上面的 pattern
标签正是具体日志格式的配置,通过上面的配置,我们指定输出了时间、线程、日志级别、logger(通常为日志打印所在类的全路径)以及服务名称等信息。
2、将项目打包,并部署到一台 Ubuntu 服务器上。
清单 5. 打包并部署 Spring Boot 项目
# 打包命令 mvn package -Dmaven.test.skip=true # 部署命令 java -jar sb-elk-start-0.0.1-SNAPSHOT.jar
3、查看日志文件,logback
配置文件中我将日志存放在 /log/sb-log.log
文件中,执行 more /log/sb-log.log
命令,出现以下结果表示部署成功。
配置 Shipper 角色 Logstash
Spring Boot 项目部署成功之后,我们还需要在当前部署的机器上安装并配置 Shipper 角色的 Logstash。Logstash 的安装过程在 ELK 平台搭建小节中已有提到,这里不再赘述。安装完成后,我们需要编写 Logstash 的配置文件,以支持从日志文件中收集日志并输出到 Redis 消息管道中,Shipper 的配置如下所示。
清单 6. Shipper 角色的 Logstash 的配置
input { file { path => [ # 这里填写需要监控的文件 "/log/sb-log.log" ] } } output { # 输出到redis redis { host => "10.140.45.190" # redis主机地址 port => 6379 # redis端口号 db => 8 # redis数据库编号 data_type => "channel" # 使用发布/订阅模式 key => "logstash_list_0" # 发布通道名称 } }
其实 Logstash 的配置是与前面提到的 Logstash 管道中的三个部分(输入、过滤器、输出)一一对应的,只不过这里我们不需要过滤器所以就没有写出来。上面配置中 Input 使用的数据源是文件类型的,只需要配置上需要收集的本机日志文件路径即可。Output 描述数据如何输出,这里配置的是输出到 Redis。
Redis 的配置 data_type
可选值有 channel
和 list
两个。channel
是 Redis 的发布/订阅通信模式,而 list
是 Redis 的队列数据结构,两者都可以用来实现系统间有序的消息异步通信。channel
相比 list
的好处是,解除了发布者和订阅者之间的耦合。举个例子,一个 Indexer 在持续读取 Redis 中的记录,现在想加入第二个 Indexer,如果使用 list
,就会出现上一条记录被第一个 Indexer 取走,而下一条记录被第二个 Indexer 取走的情况,两个 Indexer 之间产生了竞争,导致任何一方都没有读到完整的日志。channel
就可以避免这种情况。这里 Shipper 角色的配置文件和下面将要提到的 Indexer 角色的配置文件中都使用了 channel
。
配置 Indexer 角色 Logstash
配置好 Shipper 角色的 Logstash 后,我们还需要配置 Indexer 角色 Logstash 以支持从 Redis 接收日志数据,并通过过滤器解析后存储到 Elasticsearch 中,其配置内容如下所示。
清单 7. Indexer 角色的 Logstash 的配置
input { redis { host => "192.168.142.131" # redis主机地址 port => 6379 # redis端口号 db => 8 # redis数据库编号 data_type => "channel" # 使用发布/订阅模式 key => "sb-logback" # 发布通道名称 } } filter { #定义数据的格式 grok { match => { "message" => "%{TIMESTAMP_ISO8601:time} \[%{NOTSPACE:threadName}\] %{LOGLEVEL:level} %{DATA:logger} %{NOTSPACE:applicationName} -(?:.*=%{NUMBER:timetaken}ms|)"} } } output { stdout {} elasticsearch { hosts => "localhost:9200" index => "logback" } }
与 Shipper 不同的是,Indexer 的管道中我们定义了过滤器,也正是在这里将日志解析成结构化的数据。下面是我截取的一条 logback
的日志内容:
清单 8. Spring Boot 项目输出的一条日志
2019-08-11 18:01:31.602 [http-nio-8080-exec-2] INFO c.i.s.aop.WebLogAspect sb-elk -接口日志 POST请求测试接口结束调用:耗时=11ms,result=BaseResponse{code=10000, message='操作成功'}
在 Filter 中我们使用 Grok 插件从上面这条日志中解析出了时间、线程名称、Logger、服务名称以及接口耗时几个字段。Grok 又是如何工作的呢?
1、message
字段是 Logstash 存放收集到的数据的字段,match = {"message" => ...}
代表是对日志内容做处理。
2、Grok 实际上也是通过正则表达式来解析数据的,上面出现的 TIMESTAMP_ISO8601
、NOTSPACE
等都是 Grok 内置的 patterns
,具体 Grok 中内置了哪些 patterns
可以点击这里查看。
3、我们编写的解析字符串可以使用 Grok Debugger 来测试是否正确,这样避免了重复在真实环境中校验解析规则的正确性。
查看效果
经过上面的步骤,我们已经完成了整个 ELK 平台的搭建以及 Spring Boot 项目的接入。下面我们按照以下步骤执行一些操作来看下效果。
1、启动 Elasticsearch,启动命令在 ELK 平台搭建 小节中有提到,这里不赘述(Kibana 启动同)。
2、启动 Indexer 角色的 Logstash。
# 进入到 Logstash 的解压目录,然后执行下面的命令 bin/logstash -f indexer-logstash.conf
3、启动 Kibana。
4、启动 Shipper 角色的 Logstash。
# 进入到 Logstash 的解压目录,然后执行下面的命令 bin/logstash -f indexer-logstash.conf
5、调用 Spring Boot 接口,此时应该已经有数据写入到 ES 中了。
6、在浏览器中访问 http://ip:5601
,打开 Kibana 的 Web 界面,并且如下图所示添加 logback
索引。
图 8. 在 Kibana 中添加 Elasticsearch 索引
7、进入 Discover 界面,选择 logback
索引,就可以看到日志数据了,如下图所示。
图 9. ELK 日志查看
在 Nginx 中使用 ELK
相信通过上面的步骤您已经成功的搭建起了自己的 ELK 实时日志平台,并且接入了 Logback 类型的日志。但是实际场景下,几乎不可能只有一种类型的日志,下面我们就再在上面步骤的基础之上接入 Nginx 的日志。当然这一步的前提是我们需要在服务器上安装 Nginx,具体的安装过程网上有很多介绍,这里不再赘述。查看 Nginx 的日志如下(Nginx 的访问日志默认在 /var/log/nginx/access.log
文件中)。
清单 9. Nginx 的访问日志
192.168.142.1 - - [17/Aug/2019:21:31:43 +0800] "GET /weblog/get-test?name=elk HTTP/1.1" 200 3 "http://192.168.142.131/swagger-ui.html" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.100 Safari/537.36"
同样,我们需要为此日志编写一个 Grok 解析规则,如下所示:
清单 10. 针对 Nginx 访问日志的 Grok 解析规则
%{IPV4:ip} \- \- \[%{HTTPDATE:time}\] "%{NOTSPACE:method} %{DATA:requestUrl} HTTP/%{NUMBER:httpVersion}" %{NUMBER:httpStatus} %{NUMBER:bytes} "%{DATA:referer}" "%{DATA:agent}"
完成上面这些之后的关键点是 Indexer 类型的 Logstash 需要支持两种类型的输入、过滤器以及输出,如何支持呢?首先需要给输入指定类型,然后再根据不同的输入类型走不同的过滤器和输出,如下所示(篇幅原因,配置文件在此没有全部展示,可以点击此处获取)。
清单 11. 支持两种日志输入的 Indexer 角色的 Logstash 配置
input { redis { type => "logback" ... } redis { type => "nginx" ... } } filter { if [type] == "logback" { ... } if [type] == "nginx" { ... } } output { if [type] == "logback" { ... } if [type] == "nginx" { ... } }
我的 Nginx 与 Spring Boot 项目部署在同一台机器上,所以还需修改 Shipper 类型的 Logstash 的配置以支持两种类型的日志输入和输出,其配置文件的内容可点击这里获取。以上配置完成后,我们按照查看效果 章节中的步骤,启动 ELK 平台、Shipper 角色的 Logstash、Nginx 以及 Spring Boot 项目,然后在 Kibana 上添加 Nginx 索引后就可同时查看 Spring Boot 和 Nginx 的日志了,如下图所示。
图 10. ELK 查看 Nginx 日志
ELK 启动
在上面的步骤中,ELK 的启动过程是我们一个一个的去执行三大组件的启动命令的。而且还是在前台启动的,意味着如果我们关闭会话窗口,该组件就会停止导致整个 ELK 平台无法使用,这在实际工作过程中是不现实的,我们剩下的问题就在于如何使 ELK 在后台运行。根据《Logstash 最佳实践》一书的推荐,我们将使用 Supervisor 来管理 ELK 的启停。首先我们需要安装 Supervisor,在 Ubuntu 上执行 apt-get install supervisor
即可。安装成功后,我们还需要在 Supervisor 的配置文件中配置 ELK 三大组件(其配置文件默认为 /etc/supervisor/supervisord.conf
文件)。
清单 12. ELK 后台启动
[program:elasticsearch] environment=JAVA_HOME="/usr/java/jdk1.8.0_221/" directory=/home/elk/elk/elasticsearch user=elk command=/home/elk/elk/elasticsearch/bin/elasticsearch [program:logstash] environment=JAVA_HOME="/usr/java/jdk1.8.0_221/" directory=/home/elk/elk/logstash user=elk command=/home/elk/elk/logstash/bin/logstash -f /home/elk/elk/logstash/indexer-logstash.conf [program:kibana] environment=LS_HEAP_SIZE=5000m directory=/home/elk/elk/kibana user=elk command=/home/elk/elk/kibana/bin/kibana
按照以上内容配置完成后,执行 sudo supervisorctl reload
即可完成整个 ELK 的启动,而且其默认是开机自启。当然,我们也可以使用 sudo supervisorctl start/stop [program_name]
来管理单独的应用。
结束语
在本教程中,我们主要了解了什么是 ELK,然后通过实际操作和大家一起搭建了一个 ELK 日志分析平台,并且接入了 Logback 和 Nginx 两种日志。文中所涉及到的源代码以及 Logstash 的配置文件您都可以在 Github 上找到。如果您想对本教程做补充的话欢迎发邮件(gancy.programmer@gmail.com)给我或者直接在 Github 上提交 Pull Request。
参考资源
-
Elastic 官网
-
Logstash 最佳实践
-
在 Ubuntu 上安装 JDK1.8
-
Grok 测试网站
-
Grok 常用规则
相关文章:
ELK 处理 Spring Boot 日志
ELK 处理 Spring Boot 日志,妙啊! 来源:ibm.com/developerworks/cn/java /build-elk-and-use-it-for-springboot -and-nginx/index.html ELK 简介 Logstash Elasticsearch Kibana ELK 实现方案 ELK 平台搭建 安装 Logstash 安装 Elas…...
No152.精选前端面试题,享受每天的挑战和学习
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…...
Flutter:类功能索引(全)
Flutter 类功能索引(全) 本文以表描述形式收录了Flutter中提供的各个类,旨在方便地进行查询相关组件。 本文地址:https://blog.csdn.net/qq_28550263/article/details/133415589 跳转:字母索引 A 组件名称描述Animat…...
电脑技巧:笔记本电脑升级固态硬盘的注意事项,看完你就懂了
目录 1、接口类型 2、接口速率 3、固态硬盘的尺寸 4、发热情况 5、总结 如今的固态硬盘价格越来越便宜了,甚至某品牌4TB的PCIe4.0 M.2还爆出过不到900元的“报恩价”,让不少小伙伴都动了扩容甚至囤货的心思。但对于笔记本电脑用户来说,升…...
TLS/SSL(一)科普之加密、签名和SSL握手
一 背景知识 感悟: 不能高不成低不就备注: 以下内容没有逻辑排版,仅做记录 https基础面经 ① 加密方式 说明: 单向和双向认证遗留: 如何用openssl从私钥中提取公钥? ② 互联网数据安全可靠条件 说明: 二者相…...
UVA-1374 旋转游戏 题解答案代码 算法竞赛入门经典第二版
GitHub - jzplp/aoapc-UVA-Answer: 算法竞赛入门经典 例题和习题答案 刘汝佳 第二版 由于书上给了思路,所以做起来并不难。 即使超时,因为数据量不大(1000个), 我们也可以直接打表直接返回结果。 但是如果想不打表完…...
logback.xml springboot 项目通用logback配置,粘贴即用,按日期生成
<configuration scan"false" scanPeriod"10 seconds"><!-- 定义日志存放的根目录 --><property name"log.dir" value"./logs" /><!-- 彩色日志依赖的渲染类 --><conversionRule conversionWord"clr&q…...
【AI视野·今日CV 计算机视觉论文速览 第256期】Thu, 28 Sep 2023
AI视野今日CS.CV 计算机视觉论文速览 Thu, 28 Sep 2023 Totally 96 papers 👉上期速览✈更多精彩请移步主页 Daily Computer Vision Papers SHACIRA: Scalable HAsh-grid Compression for Implicit Neural Representations Authors Sharath Girish, Abhinav Shriva…...
2023-9-28 JZ26 树的子结构
题目链接:树的子结构 import java.util.*; /** public class TreeNode {int val 0;TreeNode left null;TreeNode right null;public TreeNode(int val) {this.val val;}} */ public class Solution {public boolean HasSubtree(TreeNode root1,TreeNode root2) …...
ElementUI之首页导航+左侧菜单
文章目录 一、Mock.js1.1.什么是Mock.js1.2.安装与配置1.3使用 二、登录注册跳转2.1.在views中添加Register.vue2.2.在Login.vue中的methods中添加gotoRegister方法2.3.在router/index.js中注册路由 三、组件通信(总线)3.1 在main.js中添加内容3.2.在com…...
【Linux学习】04Linux实用操作
Linux(B站黑马)学习笔记 01Linux初识与安装 02Linux基础命令 03Linux用户和权限 04Linux实用操作 05-1Linux上安装部署各类软件 文章目录 Linux(B站黑马)学习笔记前言04Linux实用操作各类小技巧(快捷键)ct…...
一篇博客学会系列(1) —— C语言中所有字符串函数以及内存函数的使用和注意事项
目录 1、求字符串长度函数 1.1、strlen 2、字符串拷贝(cpy)、拼接(cat)、比较(cmp)函数 2.1、长度不受限制的字符串函数 2.1.1、strcpy 2.1.2、strcat 2.1.3、strcmp 2.2、长度受限制的字符串函数 2.2.1、strncpy 2.2.2、strncat 2.2.3、strncmp 3、字符串查找函数…...
计算机视觉与深度学习-循环神经网络与注意力机制-RNN(Recurrent Neural Network)、LSTM-【北邮鲁鹏】
目录 举例应用槽填充(Slot Filling)解决思路方案使用前馈神经网络输入1-of-N encoding(One-hot)(独热编码) 输出 问题 循环神经网络(Recurrent Neural Network,RNN)定义如何工作学习目标深度Elm…...
brew 安装MySQL 5.7
写在前面:博主是一只经过实战开发历练后投身培训事业的“小山猪”,昵称取自动画片《狮子王》中的“彭彭”,总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域,如今终有小成…...
【中国知名企业高管团队】系列22:滴滴
大家好! 今天华研荟的走进中国知名企业高管团队系列带大家认识滴滴。 滴滴公司是出行领域的先行者,也是一个典型样本。通过滴滴公司的名字变迁我们可以感受到滴滴公司的业务发展,这也是整个出行行业公司的发展路径: 第一阶段&a…...
Unity之Hololens如何实现3D物体交互
一.前言 什么是Hololens? Hololens是由微软开发的一款混合现实头戴式设备,它将虚拟内容与现实世界相结合,为用户提供了沉浸式的AR体验。Hololens通过内置的传感器和摄像头,能够感知用户的环境,并在用户的视野中显示虚拟对象。这使得用户可以与虚拟内容进行互动,将数字信…...
IDEA Debug技巧大全,看完就能提升工作效率
作者简介 目录 1.行断点 2.方法断点 3.异常断点 4.字段断点 5.条件表达式 1.行断点 行断点就是平时我们在代码行旁边单击鼠标打上的断点,这个没有什么好说的。关键点在于很多人不知道的,行断点其实是可以右击选择是对改行的全部调用都生效…...
蓝桥等考Python组别六级003
第一部分:选择题 1、PythonL6(15分) 运行下面的程序,输出的值最大可能是()。 importrandom print(random.randint(2,4)*5) 10152030正确答案:C 2、PythonL6(15分) 甲、乙、丙三个人赛跑,已知甲不是第一名,乙不是第二名,名次没有并列的。...
机器学习小白理解之一元线性回归
关于机器学习,百度上一搜一大摞,总之各有各的优劣,有的非常专业,有的看的似懂非懂。我作为一名机器学习的门外汉,为了看懂这些公式和名词真的花了不少时间,还因此去着重学了高数。 不过如果不去看公式&…...
目标检测:FROD: Robust Object Detection for Free
论文作者:Muhammad,Awais,Weiming,Zhuang,Lingjuan,Lyu,Sung-Ho,Bae 作者单位:Sony AI; Kyung-Hee University 论文链接:http://arxiv.org/abs/2308.01888v1 内容简介: 1)方向:目标检测 2)…...
linux 和 windows的換行符不兼容問題
linux 和 windows的換行符: 1.vim 模式下,執行命令: :set ffunix idea中設置code style...
ubuntu 20 安装 CUDA
1. 查看需要安装的cuda版本 nvidia-smi cuda的版本信息如下图所示 2. 去官网下载对应版本的CUDA 官网:CUDA Toolkit Archive | NVIDIA Developer 弹出以下界面,依次点击以下按钮 得到以下内容: 复制下载链接,下载cuda11到本…...
C++友元函数和友元类
友元介绍 类的友元函数是定义在类外部,但有权访问类的所有私有(private)成员和保护(protected)成员。尽管友元函数的原型有在类的定义中出现过,但是友元函数并不是成员函数。 友元可以是一个函数…...
特斯拉——使用人工智能制造智能汽车
特斯拉(Tesla)是电动汽车开发和推广的先驱。特斯拉对自动驾驶汽车的未来寄予厚望--实际上,每一辆特斯拉汽车都有可能通过软件升级成为自动驾驶汽车。该公司还生产和销售高级电池和太阳能电池板。 汽车的自动驾驶是按从1~5的等级划分的。自适应巡航控制和自动停车系…...
如何删除gitlab上多余的文件夹
无意间在提交代码时,包含了多余的 .idea 或者 __pychche__ 缓存文件夹等等,如何一次性删除呢? 实际上没有更好的办法,如果还没有合并,close 掉 MR就行了,重新提交。 如果已经合并了,就会留下记…...
computed和methods有什么区别
面试题:computed和methods有什么区别 标准而浅显的回答 在使用时,computed当做属性使用,而methods则当做方法调用computed可以具有getter和setter,因此可以赋值,而methods不行computed无法接收多个参数,而m…...
MySQL索引分类和操作(增删查)、聚集索引、二级索引(索引篇 二)
具体类型索引分类 分类主要作用特点主键索引(primary)针对于表中主键创建的索引默认自动创建, 只能有一个唯一索引(unique)避免同一个表中某数据列中的值重可以有多个常规索引最基本类型,可以加快查询速度可以有多个全文索引(fulltext)查找的是文本中的关键词&…...
(三)Python变量类型和运算符
所有的编程语言都支持变量,Python 也不例外。变量是编程的起点,程序需要将数据存储到变量中。 变量在 Python 内部是有类型的,比如 int、float 等,但是我们在编程时无需关注变量类型,所有的变量都无需提前声明&#x…...
vue三种import导入方式详解?
在Vue.js中,你可以使用三种不同的方式来导入模块或组件: 默认导入 (Default Import): 这种方式用于导入一个模块的默认导出(通常是一个组件或一个对象)。例如: import MyComponent from ./MyComponent.vue;…...
深入理解数据库视图
在数据库管理中,视图(View)是一种强大但常常被忽视的功能。它不仅可以简化复杂的查询操作,还可以提供更高层次的数据抽象和保护。 本文将详细解析视图的各个方面,并以《三国志》游戏的数据为例,给出实际应用场景。 文章目录 什么是视图?基本结构创建视图查看视图的定义…...
网站建设的技巧有哪些方面/武汉seo托管公司
引言:NFT Insider由NFT收藏组织WHALE Members、BeepCrypto联合出品,浓缩每周NFT新闻,为大家带来关于NFT最全面、最新鲜、最有价值的讯息。每期周报将从NFT市场数据,艺术新闻类,游戏新闻类,虚拟世界类&#…...
目字形布局结构的网站/个人购买链接
拿到了自己阿里云服务器的日志,对其需要进行处理。class Read_Rizhi:def __init__(self,filename):self.filenamefilenamedef open_file(self):try:f open(self.filename, r, encodingutf-8)resuly {code: 1, result: f}except Exception as e:resuly {code: 0, …...
易名中国网站/seo基础入门免费教程
酷睿i5-9400F基于14nm制程工艺,原生6核6线程,默认主频2.9Ghz,最大睿频4.1Ghz,设计功耗65W,无内置核心显卡 组装电脑 选i7 8700还是i5 9400f这些点很重要!看完你就知道了https://diannao.jd.com/diannao.html? i7-670…...
黑龙江省建设安全协会网站/seo需要掌握哪些技术
pomelo(五) Tutorial 2 Treasures #Tutorial 2 -- Treasures ##描述 Treasures 游戏是从 LordOfPomelo 中抽取出来,去掉了大量的游戏逻辑,用以更好的展示 Pomelo 框架的用法以及运作机制。 Treasures 很简单,输入一个用户名后,会…...
做网站的注意什么问题/房地产市场现状分析
更多Java全套学习资源均在专栏,持续更新中↑↑戳进去领取~ 🍗MySQL的安装及登陆基本操作(附图)手把手带你安装 🍗MySQL基础:通过SQL对数据库进行CRUD 🍗MySQL基础:通过SQL对表、数据…...
网站开发vs设计报告/微信软文广告经典案例
来自:http://www.it165.net/pro/html/201505/42504.html 一、前言 上篇有提到在WebAPI项目内,通过在Nuget里安装(Microsoft.AspNet.WebApi.HelpPage)可以根据注释生成帮助文档,查看代码实现会发现是基于解析项目生成的…...