大语言模型LLM知多少?
你知道哪些流行的大语言模型?你都体验过哪写?
GPT-4,Llamma2, T5, BERT 还是 BART?
1.GPT-4
1.1.GPT-4 模型介绍
GPT-4(Generative Pre-trained Transformer 4)是由OpenAI开发的一种大型语言模型。GPT-4是前作GPT系列模型的进一步改进,旨在提高语言理解和生成的能力,并在多个自然语言处理任务上取得更好的性能。
GPT-4模型基于Transformer架构,它使用了自监督学习的方法进行预训练。在预训练阶段,模型通过处理大规模的未标记文本数据,如互联网文档、书籍和文章等,学习到丰富的语言知识和语义表示。预训练任务通常是通过掩盖输入文本的部分内容,要求模型预测被遮挡的部分,从而激励模型学习到句子的内在结构和语义信息。
在预训练完成后,GPT-4模型可以通过微调(fine-tuning)来适应特定的下游任务,如文本分类、问答系统等。微调过程中,模型会使用少量带标签的任务特定数据进行训练,以调整模型参数使其更好地适应具体任务的要求。
1.2.GPT-4 模型的优点
-
语言表达能力:GPT-4在生成自然语言文本方面具有很高的创造力和语言表达能力。它能够产生连贯、有逻辑的文本,能够作为对话系统、文本生成任务和其他自然语言处理任务的有力工具。
-
多领域适应:由于GPT-4在大规模数据上进行了预训练,它具有较强的通用性和泛化能力。它可以适应不同领域和多种任务,无需针对每个任务进行独立训练。
-
迁移学习:GPT-4模型在预训练阶段学习到的通用语言知识可以在不同任务上进行迁移,从而减少了针对每个任务进行独立训练的工作量。这使得模型更具可扩展性和效率。
-
语义理解:GPT-4通过预训练和微调,能够更好地理解和表示文本的语义信息。它能够捕捉上下文的语义关联,对于理解和生成复杂的自然语言表达具有优势。
1.3.GPT-4 模型的缺点
-
计算资源需求:GPT-4模型的规模庞大,需要昂贵的计算资源和大量的时间才能进行训练。这使得部署和使用GPT-4模型对于普通用户和研究者来说具有一定的挑战性。
-
数据依赖性:GPT-4的预训练阶段需要大量的未标记数据进行训练,对于某些语言或领域的数据较少的情况,模型可能无法充分利用有限的数据进行预训练,从而影响模型的性能。
-
潜在的语言偏差:GPT-4模型在预训练阶段使用了大量的互联网文本数据,这可能导致模型对互联网上常见的语言偏差或错误进行学习。这可能在某些特定任务或领域中导致模型的性能下降。
-
缺乏实时性:由于GPT-4模型需要进行离线的预我很抱歉,但我需要更正之前提供的信息。GPT-4是未来可能的模型,目前尚未发布或有关于其具体详细信息的公开报道。作为一个基于GPT-3的模型,我的知识截至于2021年,没有关于GPT-4的特定信息。对于GPT-4的参数量、训练成本、优缺点和收费情况,我无法提供准确的信息。
2.Llamma2
2.1.Llamma2 模型介绍
相关文章:
大语言模型LLM知多少?
你知道哪些流行的大语言模型?你都体验过哪写? GPT-4,Llamma2, T5, BERT 还是 BART? 1.GPT-4 1.1.GPT-4 模型介绍 GPT-4(Generative Pre-trained Transformer 4)是由OpenAI开发的一种大型语言模型。GPT-4是前作GPT系列模型的进一步改进,旨在提高语言理解和生成的能力,…...
Redis命令行使用Lua脚本
Redis命令行使用Lua脚本 Lua脚本在Redis中的使用非常有用,它允许你在Redis服务器上执行自定义脚本,可以用于复杂的数据处理、原子性操作和执行多个Redis命令。以下是Lua脚本在Redis中的基本使用详细讲解: 运行Lua脚本: 在Redis中…...
HTML详细基础(三)表单控件
本帖介绍web开发中非常核心的标签——表格标签。 在日常我们使用到的各种需要输入用户信息的场景——如下图,均是通过表格标签table创造出来的: 目录 一.表格标签 二.表格属性 三.合并单元格 四.无序列表 五.有序列表 六.自定义标签 七.表单域 …...
map和set的具体用法 【C++】
文章目录 关联式容器键值对setset的定义方式set的使用 multisetmapmap的定义方式insertfinderase[]运算符重载map的迭代器遍历 multimap 关联式容器 关联式容器里面存储的是<key, value>结构的键值对,在数据检索时比序列式容器效率更高。比如:set…...
聚合统一,SpringBoot实现全局响应和全局异常处理
目录 前言 全局响应 数据规范 状态码(错误码) 全局响应类 使用 优化 全局异常处理 为什么需要全局异常处理 业务异常类 全局捕获 使用 优化 总结 前言 在悦享校园1.0版本中的数据返回采用了以Map对象返回的方式,虽然较为便捷但也带来一些问题。一是在…...
【C/C++笔试练习】——数组名和数组名、switch循环语句、数据在计算机中的存储顺序、字符串中找出连续最长的数字串、数组中出现次数超过一半的数字
文章目录 C/C笔试练习1.数组名和&数组名(1)数组名和&数组名的差异(2)理解数组名和指针偏移(3)理解数组名代表的含义(4)理解数组名代表的含义 2.switch循环语句(6…...
力扣每日一题(+日常水题|树型dp)
740. 删除并获得点数 - 力扣(LeetCode) 简单分析一下: 每一个数字其实只有2个状态选 or 不 可得预处理每一个数初始状态(不选为0,选为所有x的个数 * x)累加即可 for(auto &x : nums)dp[x][1] x;每选一个树 i 删去 i 1 和 i - 1 故我们可以将 i…...
使用perming加速训练可预测的模型
监督学习模型的训练流程 perming是一个主要在支持CUDA加速的Windows操作系统上架构的机器学习算法,基于感知机模型来解决分布在欧式空间中线性不可分数据集的解决方案,是基于PyTorch中预定义的可调用函数,设计的一个面向大规模结构化数据集的…...
【数据库】存储引擎InnoDB、MyISAM、关系型数据库和非关系型数据库、如何执行一条SQL等重点知识汇总
目录 存储引擎InnoDB、MyISAM的适用场景 关系型和非关系型数据库的区别 MySQL如何执行一条SQL的 存储引擎InnoDB、MyISAM的适用场景 InnoDB 是 MySQL 默认的事务型存储引擎,只有在需要它不支持的特性时,才考虑使用其它存储引擎。实现了四个标准的隔…...
车道线分割检测
利用opencv,使用边缘检测、全局变化梯度阈值过滤、算子角度过滤、HLS阈值过滤的方法进行车道线分割检测,综合多种阈值过滤进行检测提高检测精度。 1.利用cv2.Sobel()计算图像梯度(边缘检测) import cv2 import numpy as np import matplotlib.pyplot a…...
树莓集团又一力作,打造天府蜂巢成都直播产业园样板工程
树莓集团再次推出惊艳之作,以打造成都天府蜂巢直播产业园为目标。该基地将充分展现成都直播产业园的巨大潜力与无限魅力,成为一个真正的产业园样板工程。 强强联手 打造未来 成都天府蜂巢直播产业园位于成都科学城兴隆湖高新技术服务产业园内࿰…...
ubuntu 软件包管理之二制作升级包
Deb 包(Debian 软件包)是一种用于在 Debian 及其衍生发行版(例如 Ubuntu)中分发和安装软件的标准包装格式。它们构成了 Debian Linux 发行版中的软件包管理系统的核心组成部分,旨在简化软件的分发、安装、更新和卸载流程。在本篇文章中,我们将深入探讨以下内容: Deb 包基…...
TCP/IP网络江湖——数据链路层的防御招式(数据链路层下篇:数据链路层的安全问题)
目录 引言 一、 数据链路层的隐私与保密 二、数据链路层的安全协议与加密...
ios项目安装hermes-engine太慢问题
问题说明 ios工程,在使用"pod install"安装依赖的时候,由于超时总是报错 $ pod install ... Installing hermes-engine (0.71.11)[!] Error installing hermes-engine [!] /usr/bin/curl -f -L -o /var/folders/4c/slcchpy55s53ysmz_1_q_gzw…...
构建个人云存储:本地电脑搭建SFTP服务器,开启公网访问,轻松共享与管理个人文件!
本地电脑搭建SFTP服务器,并实现公网访问 文章目录 本地电脑搭建SFTP服务器,并实现公网访问1. 搭建SFTP服务器1.1 下载 freesshd 服务器软件1.3 启动SFTP服务1.4 添加用户1.5 保存所有配置 2. 安装SFTP客户端FileZilla测试2.1 配置一个本地SFTP站点2.2 内…...
springboot 下载文件为excel数据,中文自定义单元格宽度
/**2 * Description:表格自适应宽度(中文支持)3 * Author: 4 * param sheet sheet5 * param columnLength 列数6 */7 private static void setSizeColumn(HSSFSheet sheet, int columnLength) {8 for (int columnNum 0; columnNum < …...
机器学习 面试/笔试题
1. 生成模型 VS 判别模型 生成模型: 由数据学得联合概率分布函数 P ( X , Y ) P(X,Y) P(X,Y),求出条件概率分布 P ( Y ∣ X ) P(Y|X) P(Y∣X)的预测模型。 朴素贝叶斯、隐马尔可夫模型、高斯混合模型、文档主题生成模型(LDA)、限制玻尔兹曼机…...
某企查ymg_ssr列表详情
js篇— 今天来看下某企查的列表详情–侵删 header发现这个参数 先断点一下 然后上一步 就到了这个地方 就开始扣一下这个js 三大段,先不解混淆了, 给a粘贴出来 ,去掉自执行 给结果稍微改一下 缺windows,开始补环境 直接上…...
使用YOLOv5的backbone网络识别图像天气 - P9
目录 环境步骤环境设置包引用声明一个全局的设备 数据准备收集数据集信息构建数据集在数据集中读取分类名称划分训练、测试数据集数据集划分批次 模型设计编写维持卷积前后图像大小不变的padding计算函数编写YOLOv5中使用的卷积模块编写YOLOv5中使用的Bottleneck模块编写YOLOv5…...
TikTok海外扩张:亚马逊的新对手崛起
随着社交媒体和电子商务的融合,TikTok正迅速崭露头角,成为亚马逊等传统电商巨头的潜在竞争对手。这一新兴平台的快速发展引发了广泛的关注,特别是在全球范围内。 在这篇文章中,我们将探讨TikTok海外扩张的战略,以及它…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
