当前位置: 首页 > news >正文

使用perming加速训练可预测的模型

监督学习模型的训练流程

perming是一个主要在支持CUDA加速的Windows操作系统上架构的机器学习算法,基于感知机模型来解决分布在欧式空间中线性不可分数据集的解决方案,是基于PyTorch中预定义的可调用函数,设计的一个面向大规模结构化数据集的通用监督学习器,v1.4.2之后支持检测验证损失的变化间隔并提前停止训练。

pip install perming --upgrade
pip install perming>=1.4.2

数据清洗后的特征输入

在常见的自动化机器学习管线中,一组原始结构化数据集是经过一系列函数式的数据清洗操作后,得到了固定特征维度的特征数据集,但是该特征数据集没有专用的线性不可分检测方式以及相应的线性可分空间指定,所以需要用户指定潜在的线性可分空间的大小以及一些组合的学习参数。以下是以perming.Box为例展开机器学习训练的案例:

import numpy
import pandas
df = pandas.read_csv('../data/bitcoin_heist_data.csv')
df = df.to_numpy()
labels = df[:,-1] # input
features = df[:,1:-1].astype(numpy.float64) # input

此处下载数据集

加载perming并配置超参数

import perming # v1.6.0
main = perming.Box(8, 29, (60,), batch_size=256, activation='relu', inplace_on=True, solver='sgd', learning_rate_init=0.01)
main.print_config()
MLP((mlp): Sequential((Linear0): Linear(in_features=8, out_features=60, bias=True)(Activation0): ReLU(inplace=True)(Linear1): Linear(in_features=60, out_features=29, bias=True))
)
Out[1]: OrderedDict([('torch -v', '1.7.1+cu101'),('criterion', CrossEntropyLoss()),('batch_size', 256),('solver',SGD (Parameter Group 0dampening: 0lr: 0.01momentum: 0nesterov: Falseweight_decay: 0)),('lr_scheduler', None),('device', device(type='cuda'))])

参考这里查看每个模型的参数文档

从numpy.ndarray多线程加载数据集

main.data_loader(features, labels, random_seed=0)
# 参考main.data_loader.__doc__获取更多默认参数的信息

训练阶段和加速验证

main.train_val(num_epochs=1, interval=100, early_stop=True)
# 参考`main.train_val.__doc__`获取更多默认参数的信息,例如tolerance, patience
Epoch [1/1], Step [100/3277], Training Loss: 2.5657, Validation Loss: 2.5551
Epoch [1/1], Step [200/3277], Training Loss: 1.8318, Validation Loss: 1.8269
Epoch [1/1], Step [300/3277], Training Loss: 1.2668, Validation Loss: 1.2844
Epoch [1/1], Step [400/3277], Training Loss: 0.9546, Validation Loss: 0.9302
Epoch [1/1], Step [500/3277], Training Loss: 0.7440, Validation Loss: 0.7169
Epoch [1/1], Step [600/3277], Training Loss: 0.5863, Validation Loss: 0.5889
Epoch [1/1], Step [700/3277], Training Loss: 0.5062, Validation Loss: 0.5086
Epoch [1/1], Step [800/3277], Training Loss: 0.3308, Validation Loss: 0.4563
Epoch [1/1], Step [900/3277], Training Loss: 0.3079, Validation Loss: 0.4204
Epoch [1/1], Step [1000/3277], Training Loss: 0.4298, Validation Loss: 0.3946
Epoch [1/1], Step [1100/3277], Training Loss: 0.3918, Validation Loss: 0.3758
Epoch [1/1], Step [1200/3277], Training Loss: 0.4366, Validation Loss: 0.3618
Process stop at epoch [1/1] with patience 10 within tolerance 0.001

使用内置的返回项来预测评估模型

main.test()
# main.test中的默认参数只在一维标签列的分类问题中作用
# 因为损失衡量函数广泛且众多,以torcheval中的策略为主
loss of Box on the 104960 test dataset: 0.3505959212779999.
Out[2]: OrderedDict([('problem', 'classification'),('accuracy', '95.99942835365853%'),('num_classes', 29),('column', ('label name', ('true numbers', 'total numbers'))),('labels',{'montrealAPT': [100761, 104857],'montrealComradeCircle': [100761, 104857],'montrealCryptConsole': [100761, 104857],'montrealCryptXXX': [100761, 104857],'montrealCryptoLocker': [100761, 104857],'montrealCryptoTorLocker2015': [100761, 104857],'montrealDMALocker': [100761, 104857],'montrealDMALockerv3': [100761, 104857],'montrealEDA2': [100761, 104857],'montrealFlyper': [100761, 104857],'montrealGlobe': [100761, 104857],'montrealGlobeImposter': [100761, 104857],'montrealGlobev3': [100761, 104857],'montrealJigSaw': [100761, 104857],'montrealNoobCrypt': [100761, 104857],'montrealRazy': [100761, 104857],'montrealSam': [100761, 104857],'montrealSamSam': [100761, 104857],'montrealVenusLocker': [100761, 104857],'montrealWannaCry': [100761, 104857],'montrealXLocker': [100761, 104857],'montrealXLockerv5.0': [100761, 104857],'montrealXTPLocker': [100761, 104857],'paduaCryptoWall': [100761, 104857],'paduaJigsaw': [100761, 104857],'paduaKeRanger': [100761, 104857],'princetonCerber': [100761, 104857],'princetonLocky': [100761, 104857],'white': [100761, 104857]}),('loss',{'train': 0.330683171749115,'val': 0.3547004163265228,'test': 0.3505959212779999}),('sorted',[('montrealAPT', [100761, 104857]),('montrealComradeCircle', [100761, 104857]),('montrealCryptConsole', [100761, 104857]),('montrealCryptXXX', [100761, 104857]),('montrealCryptoLocker', [100761, 104857]),('montrealCryptoTorLocker2015', [100761, 104857]),('montrealDMALocker', [100761, 104857]),('montrealDMALockerv3', [100761, 104857]),('montrealEDA2', [100761, 104857]),('montrealFlyper', [100761, 104857]),('montrealGlobe', [100761, 104857]),('montrealGlobeImposter', [100761, 104857]),('montrealGlobev3', [100761, 104857]),('montrealJigSaw', [100761, 104857]),('montrealNoobCrypt', [100761, 104857]),('montrealRazy', [100761, 104857]),('montrealSam', [100761, 104857]),('montrealSamSam', [100761, 104857]),('montrealVenusLocker', [100761, 104857]),('montrealWannaCry', [100761, 104857]),('montrealXLocker', [100761, 104857]),('montrealXLockerv5.0', [100761, 104857]),('montrealXTPLocker', [100761, 104857]),('paduaCryptoWall', [100761, 104857]),('paduaJigsaw', [100761, 104857]),('paduaKeRanger', [100761, 104857]),('princetonCerber', [100761, 104857]),('princetonLocky', [100761, 104857]),('white', [100761, 104857])])])

保存模型参数到本地

main.save(con=False, dir='../models/bitcoin.ckpt')
# 使用main.unique和main.indices来建立标签的双向转换

加载模型参数到预训练算法

main.load(con=False, dir='../models/bitcoin.ckpt')

加载模型后可以通过更改组合训练参数,例如优化器等来微调模型的训练。模型训练文件见Multi-classification Task.ipynb

其他常用的模型初始化设置

main = perming.Box(10, 3, (30,), batch_size=8, activation='relu', inplace_on=True, solver='sgd', criterion="MultiLabelSoftMarginLoss", learning_rate_init=0.01)
# 用于解决多标签排序问题,在用户定义标签的双向转换之后,data_loader能检测划分数据集并封装

使用如下访问该软件的测试和算法:

git clone https://github.com/linjing-lab/easy-pytorch.git
cd easy-pytorch/released_box

相关文章:

使用perming加速训练可预测的模型

监督学习模型的训练流程 perming是一个主要在支持CUDA加速的Windows操作系统上架构的机器学习算法,基于感知机模型来解决分布在欧式空间中线性不可分数据集的解决方案,是基于PyTorch中预定义的可调用函数,设计的一个面向大规模结构化数据集的…...

【数据库】存储引擎InnoDB、MyISAM、关系型数据库和非关系型数据库、如何执行一条SQL等重点知识汇总

目录 存储引擎InnoDB、MyISAM的适用场景 关系型和非关系型数据库的区别 MySQL如何执行一条SQL的 存储引擎InnoDB、MyISAM的适用场景 InnoDB 是 MySQL 默认的事务型存储引擎,只有在需要它不支持的特性时,才考虑使用其它存储引擎。实现了四个标准的隔…...

车道线分割检测

利用opencv,使用边缘检测、全局变化梯度阈值过滤、算子角度过滤、HLS阈值过滤的方法进行车道线分割检测,综合多种阈值过滤进行检测提高检测精度。 1.利用cv2.Sobel()计算图像梯度(边缘检测) import cv2 import numpy as np import matplotlib.pyplot a…...

树莓集团又一力作,打造天府蜂巢成都直播产业园样板工程

树莓集团再次推出惊艳之作,以打造成都天府蜂巢直播产业园为目标。该基地将充分展现成都直播产业园的巨大潜力与无限魅力,成为一个真正的产业园样板工程。 强强联手 打造未来 成都天府蜂巢直播产业园位于成都科学城兴隆湖高新技术服务产业园内&#xff0…...

ubuntu 软件包管理之二制作升级包

Deb 包(Debian 软件包)是一种用于在 Debian 及其衍生发行版(例如 Ubuntu)中分发和安装软件的标准包装格式。它们构成了 Debian Linux 发行版中的软件包管理系统的核心组成部分,旨在简化软件的分发、安装、更新和卸载流程。在本篇文章中,我们将深入探讨以下内容: Deb 包基…...

TCP/IP网络江湖——数据链路层的防御招式(数据链路层下篇:数据链路层的安全问题)

目录 引言 一、 数据链路层的隐私与保密 二、数据链路层的安全协议与加密...

ios项目安装hermes-engine太慢问题

问题说明 ios工程,在使用"pod install"安装依赖的时候,由于超时总是报错 $ pod install ... Installing hermes-engine (0.71.11)[!] Error installing hermes-engine [!] /usr/bin/curl -f -L -o /var/folders/4c/slcchpy55s53ysmz_1_q_gzw…...

构建个人云存储:本地电脑搭建SFTP服务器,开启公网访问,轻松共享与管理个人文件!

本地电脑搭建SFTP服务器,并实现公网访问 文章目录 本地电脑搭建SFTP服务器,并实现公网访问1. 搭建SFTP服务器1.1 下载 freesshd 服务器软件1.3 启动SFTP服务1.4 添加用户1.5 保存所有配置 2. 安装SFTP客户端FileZilla测试2.1 配置一个本地SFTP站点2.2 内…...

springboot 下载文件为excel数据,中文自定义单元格宽度

/**2 * Description:表格自适应宽度(中文支持)3 * Author: 4 * param sheet sheet5 * param columnLength 列数6 */7 private static void setSizeColumn(HSSFSheet sheet, int columnLength) {8 for (int columnNum 0; columnNum < …...

机器学习 面试/笔试题

1. 生成模型 VS 判别模型 生成模型&#xff1a; 由数据学得联合概率分布函数 P ( X , Y ) P(X,Y) P(X,Y),求出条件概率分布 P ( Y ∣ X ) P(Y|X) P(Y∣X)的预测模型。 朴素贝叶斯、隐马尔可夫模型、高斯混合模型、文档主题生成模型&#xff08;LDA&#xff09;、限制玻尔兹曼机…...

某企查ymg_ssr列表详情

js篇— 今天来看下某企查的列表详情–侵删 header发现这个参数 先断点一下 然后上一步 就到了这个地方 就开始扣一下这个js 三大段&#xff0c;先不解混淆了&#xff0c; 给a粘贴出来 &#xff0c;去掉自执行 给结果稍微改一下 缺windows&#xff0c;开始补环境 直接上…...

使用YOLOv5的backbone网络识别图像天气 - P9

目录 环境步骤环境设置包引用声明一个全局的设备 数据准备收集数据集信息构建数据集在数据集中读取分类名称划分训练、测试数据集数据集划分批次 模型设计编写维持卷积前后图像大小不变的padding计算函数编写YOLOv5中使用的卷积模块编写YOLOv5中使用的Bottleneck模块编写YOLOv5…...

TikTok海外扩张:亚马逊的新对手崛起

随着社交媒体和电子商务的融合&#xff0c;TikTok正迅速崭露头角&#xff0c;成为亚马逊等传统电商巨头的潜在竞争对手。这一新兴平台的快速发展引发了广泛的关注&#xff0c;特别是在全球范围内。 在这篇文章中&#xff0c;我们将探讨TikTok海外扩张的战略&#xff0c;以及它…...

CSS详细基础(五)选择器的优先级

本节介绍选择器优先级&#xff0c;优先级决定了元素最终展示的样式~ 浏览器是通过判断CSS优先级&#xff0c;来决定到底哪些属性值是与元素最为相关的&#xff0c;从而作用到该元素上。CSS选择器的合理组成规则决定了优先级&#xff0c;我们也常常用选择器优先级来合理控制元素…...

LLM-TAP随笔——有监督微调【深度学习】【PyTorch】【LLM】

文章目录 5、 有监督微调5.1、提示学习&语境学习5.2、高效微调5.3、模型上下文窗口扩展5.4、指令数据构建5.5、开源指令数据集 5、 有监督微调 5.1、提示学习&语境学习 提示学习 完成预测的三个阶段&#xff1a;提示添加、答案搜索、答案映射 提示添加 “[X] 我感到…...

kafka伪集群部署,使用docker环境拷贝模式

线上启动容器的方式是复制容器的运行环境出来&#xff0c;然后进行运行脚本的形式 1&#xff1a;在home/kafka目录下创建如下目录 2&#xff1a;复制kafka1容器内的数据/bitnami/kafka/data&#xff0c;直接放在1992_data里面&#xff0c;同理,复制kafka2容器内的数据/bitnami/…...

工业交换机一般的价格是多少呢?

工业交换机是一种应用于工业领域的网络设备。它的性能和所有安全指标都比一般商业交换机更加稳定。所以&#xff0c;工业级交换机的价格相对于普通的交换机要稍稍昂贵一些。工业交换机一般的价格是多少呢&#xff1f;每个厂家的交换机价格是不是都一样呢&#xff1f; 首先&…...

QT使用前的知识

QT使用前的知识 常用的快捷键 源文件的内容解释 .pro文件的解释 头文件的解释 构建新的对象—组成对象树 槽函数 自定的信号和槽 槽函数的信号是一个重载函数时 电机按钮触发信号 调用无参数的信号 断开信号...

Unity制作旋转光束

Unity制作旋转光束 大家好&#xff0c;我是阿赵。 这是一个在很多游戏里面可能都看到过的效果&#xff0c;在传送门、魔法阵、角色等脚底下往上散发出一束拉丝形状的光&#xff0c;然后在不停的旋转。 这次来在Unity引擎里面做一下这种效果。 一、准备材料 需要准备的素材很简…...

考研王道强化阶段(二轮复习)“算法题”备考打卡表 记录

问题&#xff1a;做408真题_2010_42题&#xff0c;即王道书 2.2.3_大题_10 思路&#xff1a; 回头补 代码&#xff1a; int moveL(SqlList &L,SqlList &S,int p) {// 健壮性表达if( L.len 0 ){return 0;}// 调用另外一个顺序表存储pos前面的元素for( int i0;i<p;…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...