当前位置: 首页 > news >正文

设计模式5、原型模式 Prototype

解释说明:使用原型实例指定待创建对象的类型,并且通过复制这个原型阿里创建型的对象

UML 结构图:

抽象原型(Prototype):规定了具体原型对象必须实现的clone()方法

具体原型(ConcretePrototype):实现抽象原型类的clone()方法,它是可被复制的对象

访问类:使用具体原型类中的clone()方法来复制新的对象。

浅拷贝:创建一个新对象,新对象的属性和原来对象完全相同,对于非基本类型属性,仍指向原有属性所指向的对象的内存地址

深拷贝:创建一个新对象,属性中引用的其他对象也会被克隆,不再指向原有对象地址

优点:

    如果创建新的对象比较复杂,可以利用原型模式简化对象的创建过程,同时也能够提高效率。

    简化对象的创建,无需理会创建过程。

    可以在程序运行时(对象属性发生了变化)获得一份内容相同的实例,他们之间不会相互干扰。

缺点:

    在实现深拷贝时可能需要比较复杂的代码

    需要为每一个类配备一个克隆方法,而且该克隆方法需要对类的功能进行通盘考虑,这对全新的类来说不是很难,但对已有的类进行改造时,不一定是件容易的事,必须修改其源代码,违背了“开闭原则”。

适用场景

    如果创建新对象成本较大,可以利用已有的对象进行复制来获得。

    如果系统要保存对象的状态,而对象的状态变化很小,或者对象本身占内存不大的时候,也可以使用原型模式配合备忘录模式来应用。相反,如果对象的状态变化很大,或者对象占用的内存很大,那么采用状态模式会比原型模式更好。

    需要避免使用分层次的工厂类来创建分层次的对象,并且类的实例对象只有一个或很少的几个组合状态,通过复制原型对象得到新实例可能比使用构造函数创建一个新实例更加方便

#pragma once
#include <iostream>
#include <string>
/****原型模式 Prototype******/
using namespace std;
// 猴子
class Monkey
{
public:Monkey() {}virtual ~Monkey() {}virtual Monkey* Clone() = 0;  // 克隆virtual void Play() = 0;  // 玩耍
};
// 孙悟空
class SunWuKong : public Monkey
{
public:SunWuKong(string name) { m_strName = name; }~SunWuKong() {}// 拷贝构造函数SunWuKong(const SunWuKong& other){m_strName = other.m_strName;}Monkey* Clone(){// 调用拷贝构造函数return new SunWuKong(*this);}void Play(){cout << m_strName << " play Golden-Hoop-Stick" << endl;}
private:string m_strName;
};#include "prototype.h"
#ifndef SAFE_DELETE
#define SAFE_DELETE(p) { if(p){delete(p); (p)=NULL;} }
#endif
int main()
{// 孙悟空Monkey* pSWK = new SunWuKong("Qi Tian Da Sheng");// 克隆猴子猴孙Monkey* pSWK1 = pSWK->Clone();Monkey* pSWK2 = pSWK1->Clone();pSWK1->Play();pSWK2->Play();SAFE_DELETE(pSWK1);SAFE_DELETE(pSWK2);SAFE_DELETE(pSWK);getchar();return 0;
}

相关文章:

设计模式5、原型模式 Prototype

解释说明&#xff1a;使用原型实例指定待创建对象的类型&#xff0c;并且通过复制这个原型阿里创建型的对象 UML 结构图&#xff1a; 抽象原型&#xff08;Prototype&#xff09;&#xff1a;规定了具体原型对象必须实现的clone()方法 具体原型&#xff08;ConcretePrototype&…...

驱动挂载物理页代码示例

驱动挂载物理页代码示例 使用的实验环境为32位xp系统在101012分页模式下 此实验用于测试对分页模式的掌握程度 代码思路如下&#xff1a; 获取目标进程的cr3在目标进程中申请新的物理页拆分新申请的物理页的线性地址通过差分出的内容获取pte将pte写入到要挂载的线性地址的p…...

【新版】系统架构设计师 - 层次式架构设计理论与实践

个人总结&#xff0c;仅供参考&#xff0c;欢迎加好友一起讨论 文章目录 架构 - 层次式架构设计理论与实践考点摘要层次式体系结构概述表现层框架设计MVC模式MVP模式MVVM模式使用XML设计表现层表现层中UIP设计思想 中间层架构设计业务逻辑层工作流设计业务逻辑层设计 数据访问层…...

大数据Flink(九十):Lookup Join(维表 Join)

文章目录 Lookup Join(维表 Join) Lookup Join(维表 Join) Lookup Join 定义(支持 Batch\Streaming):Lookup Join 其实就是维表 Join,比如拿离线数仓来说,常常会有用户画像,设备画像等数据,而对应到实时数仓场景中,这种实时获取外部缓存的 Join 就叫做维表 Join。…...

Docker方式创建MySQL8的MGR集群

目录 一、MGR简述二、安装环境及要求2.1 系统版本2.2 网络要求 三、安装步骤3.1 创建容器3.2 创建用户3.3 安装插件3. 4 启动集群3.5 加入集群 四、查看集群查看 MGR 组成员列表查看 MGR 组成员拓扑信息 五、其他说明集群配置要求集群配置限制集群相关变量和状态 一、MGR简述 …...

问 ChatGPT 关于GPT的事情:扩展篇

一、GPT预训练有什么节省显存和算力的技巧吗&#xff1f;我如何拿四块A100完成175B模型的预训练&#xff1f; 对于GPT预训练&#xff0c;有一些技巧可以帮助节省显存和算力。以下是一些常用的技巧&#xff1a; 按批次截断&#xff1a;在较长的文本序列中&#xff0c;将其切割…...

Spring Boot 集成 MinIO 实现文件上传、下载和删除

MinIO 是一种开源的对象存储服务&#xff0c;它基于云原生架构构建&#xff0c;并提供了高性能、易于扩展和安全的存储解决方案。 一.安装和配置 MinIO 服务器 为了演示方便&#xff0c;本文采用Windows安装 1.在官方网站下载MinIO 安装文件&#xff0c;地址&#xff1a;ht…...

Polygon Miden交易模型:Actor模式 + ZKP => 并行 + 隐私

1. 引言 前序博客&#xff1a; Polygon Miden&#xff1a;扩展以太坊功能集的ZK-optimized rollupPolygon Miden zkRollup中的UTXO账户混合状态模型 Polygon Miden为&#xff1a; ZK-optimized rollup由客户端生成证明完善Polygon ZK系列解决方案&#xff0c;致力于成为网络…...

Java流的体系结构(二)

文章目录 一、对象流的使用1.概念2.序列化机制3.代码案例&#xff1a;序列化过程&#xff1a;将内存中的java对象保存到磁盘中或通过通络传输出去4.反序列化&#xff0c;将磁盘文件中的对象还原为内存中的一个java对象 二、RandomAccessFile的使用1.说明2.代码案例 提示&#x…...

python计算阶层

阶层&#xff08;Factorial&#xff09;是指从1到一个正整数n的所有整数相乘&#xff0c;即n! 1 2 3 … n。下面是Python代码计算阶层&#xff1a; def factorial(n):"""计算阶层:param n: 正整数:return: n的阶层"""if n 1 or n 0:retu…...

前端架构师之01_ES6_基础

1 初识ES6 简单来说&#xff0c;ECMAScript是JavaScript语言的国际标准&#xff0c;JavaScript是实现ECMAScript标准的脚本语言。 2011年&#xff0c;ECMA国际标准化组织在发布ECMAScript 5.1版本之后&#xff0c;就开始着手制定第6版规范。 存在的问题&#xff1a;这个版本…...

银行卡号识别

# 导入工具包 from imutils import contours import numpy as np import argparse import cv2 import myutils# 设置参数 # ap = argparse.ArgumentParser() # ap.add_argument("-i", "--image", required=True, # help="path to input image")…...

【Idea】idea、datagrip设置输入法

https://github.com/RikudouPatrickstar/JetBrainsRuntime-for-Linux-x64/releases/tag/jbr-release-17.0.6b829.5https://github.com/RikudouPatrickstar/JetBrainsRuntime-for-Linux-x64/releases/tag/jbr-release-17.0.6b829.5 下载后解压并重命名为 jbr, 然后替换对应 ide…...

回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测 目录 回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于RF-Adaboost随机森林结合…...

最小生成树 | 市政道路拓宽预算的优化 (Minimum Spanning Tree)

任务描述&#xff1a; 市政投资拓宽市区道路&#xff0c;本着执政为民&#xff0c;节省纳税人钱的目的&#xff0c;论证是否有必要对每一条路都施工拓宽&#xff1f; 这是一个连问带答的好问题。项目制学习可以上下半场&#xff0c;上半场头脑风暴节省投资的所有可行的思路&a…...

Java实现使用多线程,实现复制文件到另一个目录,起不一样的名字,创建100万个数据

目录 1 需求2 实现 1 需求 我现在有一个300MB 的文件&#xff0c;想要根据这个文件&#xff0c;创建100万个大小一样的&#xff0c;名称不一样&#xff0c;如何实现&#xff0c;如何比较快点实现 2 实现 1 先准备好这个文件 2 准备好目录 3 写代码 private static void crea…...

uni-app:canvas-图形实现1

效果 代码 <template><view><!-- 创建了一个宽度为300像素&#xff0c;高度为200像素的canvas元素。canvas-id属性被设置为"firstCanvas"&#xff0c;可以用来在JavaScript中获取该canvas元素的上下文对象。 --><canvas style"width:200p…...

【算法分析与设计】动态规划(下)

目录 一、最长公共子序列1.1 最长公共子序列的结构1.2 子问题的递归结构1.3 计算最优值1.4 举例说明1.5 算法的改进 二、最大子段和2.1 代码2.2 最大子段和问题的分治算法2.3 代码2.4 分治算法的时间复杂度2.5 最大子段和问题的动态规划算法 三、凸多边形最优三角剖分3.1 三角剖…...

计算机图像处理-均值滤波

均值滤波 线性滤波器的原始数据与滤波结果是一种算术运算&#xff0c;即用加减乘除等运算实现&#xff0c;如均值滤波器&#xff08;模板内像素灰度值的平均值&#xff09;、高斯滤波器&#xff08;高斯加权平均值&#xff09;等。由于线性滤波器是算术运算&#xff0c;有固定…...

FreeRTOS入门教程(空闲任务和钩子函数及任务调度算法)

文章目录 前言一、空闲任务概念二、钩子函数概念三、任务调度算法四、任务调度算法实验1.实验代码2.是否抢占3.时间片是否轮转4.空闲任务让步 总结 前言 本篇文章将带大家学习一下什么是空闲任务以及钩子函数&#xff0c;以及学习FreeRTOS中的任务调度算法&#xff0c;了解在F…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...

恶补电源:1.电桥

一、元器件的选择 搜索并选择电桥&#xff0c;再multisim中选择FWB&#xff0c;就有各种型号的电桥: 电桥是用来干嘛的呢&#xff1f; 它是一个由四个二极管搭成的“桥梁”形状的电路&#xff0c;用来把交流电&#xff08;AC&#xff09;变成直流电&#xff08;DC&#xff09;。…...

针对药品仓库的效期管理问题,如何利用WMS系统“破局”

案例&#xff1a; 某医药分销企业&#xff0c;主要经营各类药品的批发与零售。由于药品的特殊性&#xff0c;效期管理至关重要&#xff0c;但该企业一直面临效期问题的困扰。在未使用WMS系统之前&#xff0c;其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...