buu [GWCTF 2019]BabyRSA 1
题目描述:
import hashlib
import sympy
from Crypto.Util.number import *flag = 'GWHT{******}'
secret = '******'assert(len(flag) == 38)half = len(flag) / 2flag1 = flag[:half]
flag2 = flag[half:]secret_num = getPrime(1024) * bytes_to_long(secret)p = sympy.nextprime(secret_num)
q = sympy.nextprime(p)N = p * qe = 0x10001F1 = bytes_to_long(flag1)
F2 = bytes_to_long(flag2)c1 = F1 + F2
c2 = pow(F1, 3) + pow(F2, 3)
assert(c2 < N)m1 = pow(c1, e, N)
m2 = pow(c2, e, N)output = open('secret', 'w')
output.write('N=' + str(N) + '\n')
output.write('m1=' + str(m1) + '\n')
output.write('m2=' + str(m2) + '\n')
output.close()
N=636585149594574746909030160182690866222909256464847291783000651837227921337237899651287943597773270944384034858925295744880727101606841413640006527614873110651410155893776548737823152943797884729130149758279127430044739254000426610922834573094957082589539445610828279428814524313491262061930512829074466232633130599104490893572093943832740301809630847541592548921200288222432789208650949937638303429456468889100192613859073752923812454212239908948930178355331390933536771065791817643978763045030833712326162883810638120029378337092938662174119747687899484603628344079493556601422498405360731958162719296160584042671057160241284852522913676264596201906163
m1=90009974341452243216986938028371257528604943208941176518717463554774967878152694586469377765296113165659498726012712288670458884373971419842750929287658640266219686646956929872115782173093979742958745121671928568709468526098715927189829600497283118051641107305128852697032053368115181216069626606165503465125725204875578701237789292966211824002761481815276666236869005129138862782476859103086726091860497614883282949955023222414333243193268564781621699870412557822404381213804026685831221430728290755597819259339616650158674713248841654338515199405532003173732520457813901170264713085107077001478083341339002069870585378257051150217511755761491021553239
m2=487443985757405173426628188375657117604235507936967522993257972108872283698305238454465723214226871414276788912058186197039821242912736742824080627680971802511206914394672159240206910735850651999316100014691067295708138639363203596244693995562780286637116394738250774129759021080197323724805414668042318806010652814405078769738548913675466181551005527065309515364950610137206393257148357659666687091662749848560225453826362271704292692847596339533229088038820532086109421158575841077601268713175097874083536249006018948789413238783922845633494023608865256071962856581229890043896939025613600564283391329331452199062858930374565991634191495137939574539546
题目分析:
对代码进行分析可得大致加密过程为:
- 首先给了字符串明文flag和secret,然后对flag对半切得到flag1和flag2
- 随机生成一个1024位(2进制)的素数,并将secret(字符串)类型转化为整数类型,然后将这两个结果相乘得到secret_num
拓展:
bytes_to_long(x) —> 字节转整数 (会将字节x转化为它的ascii码)
long_to_bytes(x) —> 整数转字节
- 取secret_num的下一个素数作为p,取p的下一个素数作为q,得到N=p*q
必备知识:
sympy.prevprime(x)是求大于x最近的质数
sympy.nextprime(x)是求小于x最近的质数
- 将flag1和flag2通过bytes_to_long转化为整数得到F1和F2
- 将F1,F2设计成方程组得到c1,c2,进一步加密得到m1,m2
- 最后给出运行结果得到 N,m1,m2
decrypt(解密)
- 题中给出了N,通过以上分析可以得知p,q是两个相邻的素数,所以对N进行开方运算(iroot(N,2))后可以得到一个值x,并且pq
- 通过sympy.prevprime(x),sympy.nextprime(x) 函数可以得到p,q,从而可以求得d
- 然后进行RSA解密得出c1和c2
c1 = pow(m1,d,N)
c2 = pow(m2,d,N)
- 至此,我们得到一个方程组:
c1=F1+F2
c2=F13+F23
- 利用sympy库进行方程组求解:
from sympy import *
F1 = Symbol('F1')
F2 = Symbol('F2')
F1,F2 = solve([F1+F2-c1,(F1)**3+(F2)**3-c2])
得到:
{F1: 1141553212031156130619789508463772513350070909, F2: 1590956290598033029862556611630426044507841845},
{F1: 1590956290598033029862556611630426044507841845, F2: 1141553212031156130619789508463772513350070909}
- 得到两组解,但仔细看只是调换的位置而已,两组都试一下,便可得到最终flag
- 完整代码:
N=636585149594574746909030160182690866222909256464847291783000651837227921337237899651287943597773270944384034858925295744880727101606841413640006527614873110651410155893776548737823152943797884729130149758279127430044739254000426610922834573094957082589539445610828279428814524313491262061930512829074466232633130599104490893572093943832740301809630847541592548921200288222432789208650949937638303429456468889100192613859073752923812454212239908948930178355331390933536771065791817643978763045030833712326162883810638120029378337092938662174119747687899484603628344079493556601422498405360731958162719296160584042671057160241284852522913676264596201906163
m1=90009974341452243216986938028371257528604943208941176518717463554774967878152694586469377765296113165659498726012712288670458884373971419842750929287658640266219686646956929872115782173093979742958745121671928568709468526098715927189829600497283118051641107305128852697032053368115181216069626606165503465125725204875578701237789292966211824002761481815276666236869005129138862782476859103086726091860497614883282949955023222414333243193268564781621699870412557822404381213804026685831221430728290755597819259339616650158674713248841654338515199405532003173732520457813901170264713085107077001478083341339002069870585378257051150217511755761491021553239
m2=487443985757405173426628188375657117604235507936967522993257972108872283698305238454465723214226871414276788912058186197039821242912736742824080627680971802511206914394672159240206910735850651999316100014691067295708138639363203596244693995562780286637116394738250774129759021080197323724805414668042318806010652814405078769738548913675466181551005527065309515364950610137206393257148357659666687091662749848560225453826362271704292692847596339533229088038820532086109421158575841077601268713175097874083536249006018948789413238783922845633494023608865256071962856581229890043896939025613600564283391329331452199062858930374565991634191495137939574539546
e = 65537
import gmpy2
import libnum
import sympy.crypto.crypto
x = gmpy2.iroot(N,2)[0]
p = sympy.nextprime(x)
q = N//p
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)
# m1 = pow(c1, e, N)
# m2 = pow(c2, e, N)
c1 = pow(m1,d,N)
c2 = pow(m2,d,N)
from sympy import *
F1 = Symbol('F1')
F2 = Symbol('F2')
print(solve([F1+F2-c1,(F1)**3+(F2)**3-c2]),F1,F2)
F1,F2 = solve([F1+F2-c1,(F1)**3+(F2)**3-c2])
F2 = 1141553212031156130619789508463772513350070909
F1 = 1590956290598033029862556611630426044507841845
print(libnum.n2s(int(F1))+libnum.n2s(int(F2)))
- 最后得到flag{f709e0e2cfe7e530ca8972959a1033b2}
收获与体会:
- 了解了bytes_to_long(x) 与 long_to_bytes(x) 相关知识
- 代码中有一步有点一知半解
m1 = pow(c1, e, N)
m2 = pow(c2, e, N)
---->(这里有点迷)
c1 = pow(m1,d,N)
c2 = pow(m2,d,N)
相关文章:

buu [GWCTF 2019]BabyRSA 1
题目描述: import hashlib import sympy from Crypto.Util.number import *flag GWHT{******} secret ******assert(len(flag) 38)half len(flag) / 2flag1 flag[:half] flag2 flag[half:]secret_num getPrime(1024) * bytes_to_long(secret)p sympy.nextp…...

codeforces 1669F
题意: alice和bob从数组两边的吃糖果, 数组的值就是糖果重量 要求alice和bob吃的糖果重量必须一样, 输出能吃几个糖果 这题最先想到的是前后缀相加 模拟一个前缀和 和 后缀和 在n/2的位置向前找前缀和 在n/2的位置向后找后缀和 找到第一个前缀和后缀和的下标输出就好 …...

高数考试必备知识点
三角函数与反三角函数的知识点 正弦函数 ysin x, 反正弦函数 yarcsin x • y sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x (π/2) kπ 为对称轴 • y arcsin x, x∈[–1,1]…...

[蓝桥杯] 二分与前缀和习题练习
文章目录 一、二分查找习题练习 1、1 数的范围 1、1、1 题目描述 1、1、2 题解关键思路与解答 1、2 机器人跳跃问题 1、2、1 题目描述 1、2、2 题解关键思路与解答 1、3 四平方和 1、3、1 题目描述 1、3、2 题解关键思路与解答 二、前缀和习题练习 2、1 前缀和 2、1、1 题目描述…...

SpringMvc中HandlerAdapter组件的作用
概述 我们在使用springMVC时,都知道其中不仅包含handlerMapping组件还包含handlerAdapter组件,为什么呢? springMVC请求流程图 HandlerAdapter组件使用了适配器模式 适配器模式的本质是接口转换和代码复用,这里使用适配器模式的…...

FreeRTOS优先级翻转
优先级翻转优先级翻转:高优先级的任务反而慢执行,低优先级的任务反而优先执行优先级翻转在抢占式内核中是非常常见的,但是在实时操作系统中是不允许出现优先级翻转的,因为优先级翻转会破坏任务的预期顺序,可能会导致未…...

服务器部署—部署springboot之Linux服务器安装jdk和tomcat【建议收藏】
我是用的xshell连接的云服务器,今天想在服务器上面部署一个前后端分离【springbootvue】项目,打开我的云服务器才发现,过期了,然后又买了一个,里面环境啥都没有,正好出一期教程,方便大家也方便自…...

golang项目----家庭收支记账软件
家庭收支记账软件实现基本功能(先使用面向过程,后面改成面向对象)项目代码实现改进面向过程源码面向对象源码utils包中main包中实现基本功能(先使用面向过程,后面改成面向对象) 编写文件TestMyAccount.go完成基本功能 功能一:先完成可以显示…...

中国LNG市场投资机会研究
中国LNG市场投资机会研究中国LNG市场是一个具有巨大潜力和发展机遇的市场,尤其是在政府大力推动清洁能源发展的背景下,LNG市场投资机会正在不断扩大。首先,政府大力支持LNG市场的发展。政府实施的“十三五”规划将LNG作为清洁能源的重要来源&…...

Elasticsearch:索引数据是如何完成的
在我在之前的文章 “Elasticsearch:彻底理解 Elasticsearch 数据操作” 文章中,我详细地描述了如何索引数据到 Elasticsearch 中。在今天的文章中,我想更进一步来描述这个流程。 Elasticsearch 是一个非常强大和灵活的分布式数据系统&#x…...

处理器管理
处理器状态处理器管理是操作系统中重要组成部分,负责管理、调度和分配计算机系统的重要资源——处理器,并控制程序执行由于处理器管理是操作系统最核心的部分,无论是应用程序还是系统程序,最终都要在处理器上执行以实现其功能&…...

跟着我从零开始入门FPGA(一周入门系列)第五
5、同步和异步设计 前面已有铺垫,同步就是与时钟同步。 同步就是走正步,一二一,该迈哪个脚就迈那个脚,跑的快的要等着跑的慢的。 异步就是搞赛跑,各显神通,尽最大力量去跑,谁跑得快,…...

【第42天】Arrays.sort 与 Collections.sort 应用 | 整形数组与集合的排序
本文已收录于专栏🌸《Java入门一百练》🌸学习指引序、专栏前言一.sort函数二、【例题1】1、题目描述2、解题思路3、模板代码4、代码解析二、【例题1】1、题目描述2、解题思路3、模板代码4、代码解析三、推荐专栏序、专栏前言 本专栏开启,目的…...

LeetCode第334场周赛
2023.2.26LeetCode第334场周赛 A. 左右元素和的差值 思路 前缀和后缀和 代码 class Solution { public:vector<int> leftRigthDifference(vector<int>& nums) {int n nums.size();vector<int> l(n), r(n), ans(n);for (int i 1; i < n; i )l[…...

基于深度学习的三维重建网络PatchMatchNet(三):PatchMatchNet配置及代码主要运行流程
目录 1.PatchMatchNet环境配置 2. PatchMatchNet的大致执行流程(eval.py) 2.1 深度图的保存...

【一天一门编程语言】设计一门编程语言,给出基础语法代码示例,SDK设计。
文章目录设计一门编程语言,给出基础语法代码示例,SDK设计。一、编程语言设计1.1 语言名称1.2 数据类型1.3 基本运算符1.4 控制语句二、SDK设计2.1 基础库2.2 第三方库三、例子用 Mango 这门语言实现斐波那契数列。基础语法代码示例SDK 设计使用 Mango 语…...

ubuntu 下 python 安装 venv
ubuntu 下 python 安装 venv1.首先,确保您的系统已安装 Python3 和 pip3,如果没有安装,可以使用以下命令安装:2. 接着,安装 virtualenv 包,使用以下命令:3.创建 Python 虚拟环境,使用…...

HTML#1快速入门
一. 简介HTML是一门语言, 所有的网页都是用HTML编写的HTML(Hyper Text Markup Language): 超文本(超越了文本限制,除了文字信息还可以定义图片,音频,视频等)标记语言(有标签构成的语言)W3C标准: 网页主要由三部分组成(1) 结构: HTML(2) 表现: CSS(3) 行为: JavaScript二. 快速入…...

【MySQL】事务隔离级别是怎么实现的?
事务隔离级别是怎么实现的? 四种隔离级别具体的实现方式 对于「读未提交」:直接读取最新的数据就好。对于「串行化」:通过加读写锁的方式来避免并行访问。对于「读提交」和「可重复读」:通过 Read View 来实现,主要区…...

JSP网上书店系统用myeclipse定制开发mysql数据库B/S模式java编程计算机网页
一、源码特点 JSP 网上书店系统 是一套完善的系统源码,对理解JSP java 编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。研究的基本内容是基于网上书店系 统,使用JSP作为页面开发工具。Web服务的运…...

配置 Haproxy 负载均衡群集
配置 haproxy 负载均衡群集 🏆荣誉认证:51CTO博客专家博主、TOP红人、明日之星;阿里云开发者社区专家博主、技术博主、星级博主。 💻微信公众号:微笑的段嘉许 📌本文由微笑的段嘉许原创! &#…...

计算机网络笔记 | 第一章:计算机网络概述(1.1-1.4小节知识点整理)
从专栏将讲述有关于计算机网络相关知识点,如果有想学习Java的小伙伴可以点击下方连接查看专栏,还有JavaEE部分 本专栏地址(持续更新中):🔥计算机网络 MyBatis:✍️MyBatis Java入门篇࿱…...

Flutter3引用原生播放器-Android篇
接上篇:Flutter3引用原生播放器-IOS(Swift)篇 安卓端原生播放器的接入思路与ios基本一致,所以本篇就不废话了,直接上代码: 创建插件VideoViewPlugin实现FlutterPlugin: package io.flutter.plugins.videoplayer;imp…...

SerenityOS 操作系统类 Unix 操作系统
创建于2018年的SerenityOS是一个类似Unix的操作系统,但是带有图形化界面,适合X86台式计算机,,其界面类似90 年代的Win98/NT。几乎由一个人完成额操作系统。这几天其Web浏览器通过了 Acid3 浏览器。 Kernel features 具有抢占式多…...

Bean作用域和生命周期
目录 Bean作用域的例子 作用域定义 Bean的六种作用域 设置作用域 Spring的执行过程和Bean的生命周期 Spring的主要执行流程 Bean的生命周期 在上篇博客中我们使用Spring存储和获取Bean,因此Bean是Spring中最重要的资源,今天这篇博客就深入了解Bean对象 Bean作用域的例子 …...

STM32笔记
目录 1.1. 预备阶段 1.2. 单片机介绍 2. 初识STM32 2.1. STM32 1.1. 预备阶段 1.2. 单片机介绍 1.2.1. 单片机是什么 单片微型计算机(Single Chip Microcomputer)简称为单片机(Microcontrollers),也称为微控制单元(Microcontroller Uni…...

【论文阅读】基于LevelDB的分布式数据库研究
基于LevelDB的分布式数据库研究 基于LevelDB的分布式数据库的研究与实现 - 中国知网 (cnki.net) 实现了什么? 基于键值型NoSQL数据库LevelDB,并与数据一致性算法Raft、 数据分片和负载均衡相结合,设计并实现基于LevelDB的分布式数据库。 主要…...

JavaScript高级 Iterator Generator
1. Iterator 1. JavaScript迭代器协议 在JavaScript中,迭代器也是一个具体的对象,这个对象需要符合迭代器协议(iterator protocol): ◼ 迭代器协议定义了产生一系列值(无论是有限还是无限个)…...

数字IC手撕代码--乐鑫科技(次小值与次小值出现的次数)
前言:本专栏旨在记录高频笔面试手撕代码题,以备数字前端秋招,本专栏所有文章提供原理分析、代码及波形,所有代码均经过本人验证。目录如下:1.数字IC手撕代码-分频器(任意偶数分频)2.数字IC手撕代…...

JavaScript DOM和BOM
目录 查找html元素 1.通过id 2.通过标签名 3.通过类名 DOM 1.创建动态的HTML内容 2.修改元素内容 3.改变HTML属性 4.改变css样式 DOM事件 DOM节点 1.添加HTML元素 2.删除HTML元素 浏览器对象 1.Window对象 2.Screen对象 3.History对象 4.Location对象 5.Navi…...