当前位置: 首页 > news >正文

OpenCV-Python系列(二)—— 图像处理(灰度图、二值化、边缘检测、高斯模糊、轮廓检测)

一、【灰度图、二值化】

import cv2
img = cv2.imread("lz2.png")
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)   # 灰度图
# 二值化,(127,255)为阈值
retval,bit_img = cv2.threshold(gray_img, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('photo1',img)
cv2.imshow('photo2',gray_img)
cv2.imshow('photo3',bit_img)
cv2.waitKey(0)

在这里插入图片描述

二、【边缘检测】

import cv2
img = cv2.imread("l2.png")
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)   # 灰度图
img_b = cv2.Canny(img, 38,180,apertureSize=3)    # (38,180)为阈值
img_c = cv2.Canny(img, 38,180,apertureSize=5)
cv2.imshow('photo1',img)
cv2.imshow('photo2',img_b)
cv2.imshow('photo3',img_c)
cv2.waitKey(0)

在这里插入图片描述

三、高斯滤波

import cv2
img = cv2.imread("lz2.png")
# 高斯滤波
blurred = cv2.GaussianBlur(img, (21, 21), 0)  #(21,21)越高越模糊,只能设置为奇数
cv2.imshow('photo1',img)
cv2.imshow('photo2',blurred)
cv2.waitKey(0)

在这里插入图片描述

四、【轮廓检测】

【方法一:步骤】
第一步:载入图片
第二步:使用cv2.cvtcolor() 将图片转换为灰度图
第三步: 使用cv2.threshold将图片做二值化转换
第四步:使用cv2.findContours 找出图片的轮廓值
第五步:使用cv2.drawContours在图片上画上轮廓
第六步: 使用cv2.imshow 显示

import cv2
# 第一步,读入照片
img = cv2.imread("lz2.png")
contours_img = img.copy()
# 第二步,转灰度图
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)		# 转换为灰度图
# 第三步,二值化处理
retval,bit_img = cv2.threshold(gray_img, 127, 255, cv2.THRESH_BINARY)		# 高斯滤波-去除噪音
# 第四步,寻找轮廓
cnts, hierarchy = cv2.findContours(bit_img.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 第五步,绘画轮廓
ret_img = cv2.drawContours(contours_img, cnts, -1, (0, 0, 255), 3)
# 显示图片
cv2.imshow('photo',ret_img)
cv2.waitKey(0)

在这里插入图片描述

【方法二:步骤】
第一步,读入照片 cv2.imread()
第二步,转灰度图 cv2.cvtColor()
第三步,高斯去噪 cv2.GaussianBlur()
第四步,边缘检测 cv2.Canny()
第五步,寻找轮廓 cv2.findContours()
第六步,绘画轮廓 cv2.drawContours()

import cv2
# 第一步,读入照片
img = cv2.imread("lz2.png")
contours_img = img.copy()
# 第二步,转灰度图
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)		# 转换为灰度图
# 第三步,高斯去噪
blurred_img = cv2.GaussianBlur(gray_img, (5, 5), 0)			# 高斯滤波-去除噪音
# 第四步,边缘检测
edged_img = cv2.Canny(blurred_img, 75, 200)					# Canny算子边缘检测
# 第五步,寻找轮廓
cnts, hierarchy = cv2.findContours(edged_img.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 第六步,绘画轮廓
ret_img = cv2.drawContours(contours_img, cnts, -1, (0, 0, 255), 3)
# 显示图片
cv2.imshow('photo5',ret_img)
cv2.waitKey(0)

在这里插入图片描述

相关文章:

OpenCV-Python系列(二)—— 图像处理(灰度图、二值化、边缘检测、高斯模糊、轮廓检测)

一、【灰度图、二值化】 import cv2 img cv2.imread("lz2.png") gray_img cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 灰度图 # 二值化,(127,255)为阈值 retval,bit_img cv2.threshold(gray_img, 127, 255, cv2.THRESH_BINARY) cv2.imshow(photo1,im…...

ccc-台大林轩田机器学习基石-hw1

文章目录Question1-14Question15-PLAQuestion16-PLA平均迭代次数Question17-不同迭代系数的PLAQuestion18-Pocket_PLAQuestion19-PLA的错误率Question20-修改Pocket_PLA迭代次数Question1-14 对于有明确公式和定义的不需要使用到ml 智能系统在与环境的连续互动中学习最优行为策…...

hadoop03-MapReduce【尚硅谷】

大数据学习笔记 MapReduce 一、MapReduce概述 MapReduce是一个分布式运算程序的编程框架,是基于Hadoop的数据分析计算的核心框架。 MapReduce处理过程为两个阶段:Map和Reduce。 Map负责把一个任务分解成多个任务;Reduce负责把分解后多任务处…...

测牛学堂:软件测试python学习之异常处理

python的捕获异常 程序在运行时,如果python解释器遇到一个错误,则会停止程序的执行,并且提示一些错误信息,这就是异常。 程序停止执行并且提示错误信息,称之为抛出异常。 因为程序遇到错误会停止执行,有时…...

图神经网络--图神经网络

图神经网络 图神经网络图神经网络一、PageRank简介1.1互联网的图表示1.2PageRank算法概述1.3求解PageRank二、代码实战2.1引入库2.2加载数据,并构建图2.3计算每个节点PageRank重要度2.4用节点尺寸可视化PageRank值一、PageRank简介 PageRank是Google最早的搜索引擎…...

React useCallback如何使其性能最大化?

前言 React中最让人畅谈的就是其带来的灵活性,可以说写起来非常的舒服。但是也就是它的灵活性太强,往往让我们忽略了很多细节的地方,而就是这些细节的东西能进行优化,减小我们的性能开销。可以说刚学React和工作几年后写React的代…...

长尾关键词使用方法,通过什么方式挖掘长尾关键词?

当你在搜索引擎的搜索栏中输入有关如何使用长尾关键词的查询时,你可能希望有简单快捷的方式出现在搜索结果中,可以帮助你更好地应用seo。 不过,这里要记住一件事:SEO 策略只会为你的网站带来流量;在你的产品良好之前&a…...

【网络编程套接字(一)】

网络编程套接字(一)理解源IP地址和目的IP地址理解源MAC地址和目的MAC地址理解源端口号和目的端口号PORT VS PID认识TCP协议和UDP协议网络字节序socket编程接口socket常见APIsockaddr结构简单的UDP网络程序服务端创建套接字服务端绑定字符串IP VS 整数IP客…...

shell脚本入门

实习的时候第一个月的考核就是如何部署一个云资源,当时走的捷径(杠杠的搜索能力hhhh)找到了一个shell脚本一键部署,后来被leader问起来就如实说了,leader问有没有看懂shell脚本中的逻辑……(没有&#xff0…...

【经典蓝牙】 蓝牙HFP层协议分析

HFP 概述 HFP概念介绍 HFP(Hands-Free Profile), 是蓝牙免提协议, 可以让蓝牙设备对对端蓝牙设备的通话进行控制,例如蓝牙耳机控制手机通话的接听、 挂断、 拒接、 语音拨号等。HFP中蓝牙两端的数据交互是通过定义好的AT指令来通讯的。 &am…...

互联网摸鱼日报(2023-02-26)

互联网摸鱼日报(2023-02-26) InfoQ 热门话题 迁移工具 Air2phin 宣布开源,2 步迁移 Airflow 至 Dolphinscheduler 专访奇安信董国伟博士:目前开源安全的现状并不乐观,但其重要性已成各方共识 专访Brian Behlendorf&…...

关于程序员中年危机的一个真实案例

​ 关于中年危机,网上已经有了各种各样的解读。但是,这两天一个学员跟我简单几句聊天,却触发了对于中年危机的另一种思考。如果你曾经也有点迷茫,或许你可以稍微花几分钟看下这个故事。 一、无奈的故事 ​ 39岁还出来面试&#x…...

【fly-iot飞凡物联】(2):如何从0打造自己的物联网平台,使用开源的技术栈搭建一个高性能的物联网平台,目前在设计阶段。

目录前言1,fly-iot 飞凡物联2,mqtt-broker 服务3, 管理后台产品/设备设计4,数据存储目前使用mysql,消息存储到influxdb中5,规则引擎使用 ekuiper6, 总结和其他的想法前言 本文的原文连接是: https://blog.csdn.net/freewebsys/article/detail…...

Hadoop MapReduce

目录1.1 MapReduce介绍1.2 MapReduce优缺点MapReduce实例进程阶段组成1.3 Hadoop MapReduce官方示例案例:评估圆周率π(PI)的值案例:wordcount单词词频统计1.4 Map阶段执行流程1.5 Reduce阶段执行流程1.6 Shuffle机制1.1 MapReduc…...

时间复杂度和空间复杂度详解

有一堆数据需要排序,A要使用快速排序,B要使用堆排序,A认为自己的代码更高效,B也认为自己的代码更高效,在这种情况下,怎么来判断谁的代码更好一点呢?这时候就有了时间复杂度和空间复杂度。 目录 …...

【C++】面向对象---封装

【C】面向对象—封装 1.封装的意义 封装是C面向对象三大特性之一 封装的意义: 将属性和行为作为一个整体,表现生活的事物将属性和行为加以权限控制 封装意义一: 在设计类的时候,属性和行为写在一起,表现事物 语…...

Docker简介

一、介绍容器虚拟化技术(带环境安装的一种解决方案)打破程序即应用的观念,透过镜像image将作业系统核心除外,运用应用程序所需要的运行环境,由上而下打包,达到应用程序跨平台间的无缝接轨运作。Docker是基于…...

量化学习(一)数据获取

试验环境 windows10 AnacondaPyCharm(小白参考文章:https://coderx.com.cn/?p14) VM中安装MySQL5.7(设置utf8及相应配置优化) 关于复权 小白参考文章:https://zhuanlan.zhihu.com/p/469820288 数据来源 AK…...

java并发编程讨论:锁的选择

java并发编程 线程堆栈大小 单线程的堆栈大小默认为1M,1000个线程内存就占了1G。所以,受制于内存上限,单纯依靠多线程难以支持大量任务并发。 上下文切换开销 ReentrantLock 2个线程交替自增一个共享变量,使用ReentrantLock&…...

大数据框架之Hadoop:MapReduce(三)MapReduce框架原理——ReduceTask工作机制

1、ReduceTask工作机制 ReduceTask工作机制,如下图所示。 (1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直…...

Linux应用开发之网络套接字编程(实例篇)

服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...