当前位置: 首页 > news >正文

时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测

目录

    • 时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现SVM-Adaboost时间序列预测(风电功率预测);
2.运行环境为Matlab2020b;
3.data为数据集,excel数据,单变量时间序列数据,SVM_AdaboostTS.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、MAPE、RMSE多指标评价。

模型描述

SVM-AdaBoost是一种将SVM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。SVM-AdaBoost算法的基本思想是将SVM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个SVM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测 目录 时序预测 | MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.Matlab实现SVM-Adaboost时间序列预测(风…...

useEffect和useLayoutEffect的区别

烤冷面加辣条的抖音 - 抖音 (douyin.com) 一、看下面的代码,即使调换useLayoutEffect和useEffect的位置依旧是useLayoutEffect先输出。 import { useState, useEffect, useLayoutEffect } from "react"; const Index () > {useLayoutEffect(() >…...

[科研图像处理]用matlab平替image-j,有点麻烦,但很灵活!

做材料与生物相关方向的同学应该对image-j并不陌生,前几天有个师兄拜托我用image-j分析一些图片,但使用过后发现我由于不了解image-j的工作流程而对结果并不确信,而且image-j的功能无法拓展,对有些图片的处理效果并不好&#xff0…...

Node.js |(五)包管理工具 | 尚硅谷2023版Node.js零基础视频教程

学习视频:尚硅谷2023版Node.js零基础视频教程,nodejs新手到高手 文章目录 📚概念介绍📚npm🐇安装npm🐇基本使用🐇生产依赖与开发依赖🐇npm全局安装🐇npm安装指定包和删除…...

【ES专题】ElasticSearch集群架构剖析

目录 前言阅读对象阅读导航要点笔记正文一、ES集群架构1.1 为什么要使用ES集群架构1.2 ES集群核心概念1.2.1 节点1.2.1.1 Master Node主节点的功能1.2.1.2 Data Node数据节点的功能1.2.1.3 Coordinate Node协调节点的功能1.2.1.4 Ingest Node协调节点的功能1.2.1.5 其他节点功能…...

Kafka与Flink的整合 -- sink、source

1、首先导入依赖&#xff1a; <dependency><groupId>org.apache.flink</groupId><artifactId>flink-connector-kafka</artifactId><version>1.15.2</version></dependency> 2、 source&#xff1a;Flink从Kafka中读取数据 p…...

小鱼ROS

git clone git clone https://ghproxy.com/https://github.com/stilleshan/ServerStatus git clone 私有仓库 Clone 私有仓库需要用户在 Personal access tokens 申请 Token 配合使用.git clone https://user:your_tokenghproxy.com/https://github.com/your_name/your_priv…...

简单讲讲RISC-V跳转指令基于具体场景的实现

背景 在 RISC-V指令集中&#xff0c;一共有 6 条有条件跳转指令&#xff0c;分别是 beq、bne、blt、bltu、bge、bgeu。如下是它们的定义与接口 BEQ rs1, rs2, imm ≠ BNE rs1, rs2, imm &#xff1c; BLT rs1, rs2, imm ≥ BGE rs1, rs2, imm < unsigned BLTU rs1…...

第13章 Java IO流处理(一) File类

目录 内容说明 章节内容 一、 File类 内容说明 结合章节内容重点难点,会对重要知识点进行扩展,以及做示例说明等,以便更好理解重点难点 章节内容 一、 File类 1、文件与目录的描述类——File ✔️ File类并不用来进行文件的读/写操作,并未涉及到写入或读取文件内容的…...

测试面试题集锦(四)| Linux 与 Python 编程篇(附答案)

本系列文章总结归纳了一些软件测试工程师常见的面试题&#xff0c;主要来源于个人面试遇到的、网络搜集&#xff08;完善&#xff09;、工作日常讨论等&#xff0c;分为以下十个部分&#xff0c;供大家参考。如有错误的地方&#xff0c;欢迎指正。有更多的面试题或面试中遇到的…...

pytorch中的矩阵乘法

1. 运算符介绍 关于运算&#xff0c;*运算&#xff0c;torch.mul(), torch.mm(), torch.mv(), tensor.t() 和 *代表矩阵的两种相乘方式&#xff1a; 表示常规的数学上定义的矩阵相乘&#xff1b; *表示两个矩阵对应位置处的两个元素相乘。 1.1 矩阵点乘 *和torch.mul()等同…...

Java--Stream流详解

Stream是Java 8 API添加的一个新的抽象&#xff0c;称为流Stream&#xff0c;以一种声明性方式处理数据集合&#xff08;侧重对于源数据计算能力的封装&#xff0c;并且支持序列与并行两种操作方式&#xff09; Stream流是从支持数据处理操作的源生成的元素序列&#xff0c;源可…...

[PHP]ShopXO企业级B2C免费开源商城系统 v2.3.1

ShopXO 企业级B2C免费开源电商系统&#xff01; 求实进取、创新专注、自主研发、国内领先企业级B2C电商系统解决方案。 遵循Apache2开源协议发布&#xff0c;无需授权、可商用、可二次开发、满足99%的电商运营需求。 PCH5、支付宝小程序、微信小程序、百度小程序、头条&抖音…...

Python基础入门系列详解20篇

Python基础入门&#xff08;1&#xff09;----Python简介 Python基础入门&#xff08;2&#xff09;----安装Python环境&#xff08;Windows、MacOS、CentOS、Ubuntu&#xff09; Python基础入门&#xff08;3&#xff09;----Python基础语法&#xff1a;解释器、标识符、关键…...

P02项目(学习)

★ P02项目 项目描述&#xff1a;安全操作项目旨在提高医疗设备的安全性&#xff0c;特别是在医生离开操作屏幕时&#xff0c;以减少非授权人员的误操作风险。为实现这一目标&#xff0c;我们采用多层次的保护措施&#xff0c;包括人脸识别、姿势检测以及二维码识别等技术。这些…...

pandas 笔记:get_dummies分类变量one-hot化

1 函数介绍 pandas.get_dummies 是 pandas 库中的一个函数&#xff0c;它用于将分类变量转换为哑变量/指示变量。所谓的哑变量&#xff0c;就是将分类变量的每一个不同的值转换为一个新的0/1变量。在输出的DataFrame中&#xff0c;每一列都以该值的名称命名 pandas.get_dummi…...

PTE作文练习(一)

目录 65分备考建议 WE模版 范文 Supporting ideas: SWT 65分备考建议 RA重在多听标准的正确的示范&#xff0c;RS重在抓大放小&#xff0c;WFD重在整理错题&#xff0c;以及反反复复的车轮战&#xff0c;FIBRW重在“以对代记” 就是直接看答案&#xff0c;节约时间&#…...

如何做到一套FPGA工程无缝兼容两款不同的板卡?

试想这样一种场景,有两款不同的FPGA板卡,它们的功能代码90%都是一样的,但是两个板卡的管脚分配完全不同,一般情况下,我们需要设计两个工程,两套代码,之后还需要一直维护两个版本。 那么有没有一种自动化的方式,实现一个工程,编译出一个程序文件,下载到这两个不同的板…...

VSCode修改主题为Eclipse 绿色护眼模式

前言 从参加开发以来&#xff0c;一直使用eclipse进行开发&#xff0c;基本官方出新版本&#xff0c;我都会更新。后来出来很多其他的IDE工具&#xff0c;我也尝试了&#xff0c;但他们的主题都把我劝退了&#xff0c;黑色主题是谁想出来&#xff1f;&#x1f602; 字体小的时…...

conan和cmake编译器版本不匹配问题解决

conan和cmake编译器版本不匹配问题解决 1 问题现象2 解决方法2.1 在CMakeLists.txt禁止编译器检查2.1.1 修改方式 2.2 探查问题出现的根本原因2.2.1 安装升级gcc2.2.2 安装升级g 注 执行环境&#xff1a;ubuntu 1 问题现象 conan要求的编译器版本和cmake检测到的当前的编译器…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...