当前位置: 首页 > news >正文

视频网站开发背景/网页开发需要学什么

视频网站开发背景,网页开发需要学什么,网站排名掉了怎么恢复,设计导航精选最好的设计网站大全文章目录 Chapter 5 Getting Started with pandas5.1 Introduction to pandas Data Structures1 Series2 DataFrame3 Index Objects (索引对象) Chapter 5 Getting Started with pandas 这样导入pandas: import pandas as pde:\python3.7\lib\site-packages\numpy…

文章目录

  • Chapter 5 Getting Started with pandas
  • 5.1 Introduction to pandas Data Structures
  • 1 Series
  • 2 DataFrame
  • 3 Index Objects (索引对象)

Chapter 5 Getting Started with pandas

这样导入pandas

import pandas as pd
e:\python3.7\lib\site-packages\numpy\_distributor_init.py:32: UserWarning: loaded more than 1 DLL from .libs:
e:\python3.7\lib\site-packages\numpy\.libs\libopenblas.TXA6YQSD3GCQQC22GEQ54J2UDCXDXHWN.gfortran-win_amd64.dll
e:\python3.7\lib\site-packages\numpy\.libs\libopenblas.XWYDX2IKJW2NMTWSFYNGFUWKQU3LYTCZ.gfortran-win_amd64.dllstacklevel=1)

另外可以导入SeriesDataFrame,因为这两个经常被用到:

from pandas import Series, DataFrame

5.1 Introduction to pandas Data Structures

数据结构其实就是SeriesDataFrame

1 Series

这里series我就不翻译成序列了,因为之前的所有笔记里,我都是把sequence翻译成序列的。

series是一个像数组一样的一维序列,并伴有一个数组表示label,叫做index。创建一个series的方法也很简单:

obj = pd.Series([4, 7, -5, 3])
obj
0    4
1    7
2   -5
3    3
dtype: int64

可以看到,左边表示index,右边表示对应的value。可以通过valueindex属性查看:

obj.values
array([ 4,  7, -5,  3], dtype=int64)
obj.index # like range(4)
RangeIndex(start=0, stop=4, step=1)

当然我们也可以自己指定indexlabel

obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
obj2
d    4
b    7
a   -5
c    3
dtype: int64
obj2.index
Index(['d', 'b', 'a', 'c'], dtype='object')

可以用indexlabel来选择:

obj2['a']
-5
obj2['d'] = 6
obj2[['c', 'a', 'd']]
c    3
a   -5
d    6
dtype: int64

这里[‘c’, ‘a’, ‘d’]其实被当做了索引,尽管这个索引是用string构成的。

使用numpy函数或类似的操作,会保留index-value的关系:

obj2[obj2 > 0]
d    6
b    7
c    3
dtype: int64
obj2 * 2
d    12
b    14
a   -10
c     6
dtype: int64
import numpy as np
np.exp(obj2)
d     403.428793
b    1096.633158
a       0.006738
c      20.085537
dtype: float64

另一种看待series的方法,它是一个长度固定,有顺序的dict,从index映射到value。在很多场景下,可以当做dict来用:

'b' in obj2
True
'e' in obj2
False

还可以直接用现有的dict来创建series

sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon':16000, 'Utah': 5000}
obj3 = pd.Series(sdata)
obj3
Ohio      35000
Texas     71000
Oregon    16000
Utah       5000
dtype: int64

series中的index其实就是dict中排好序的keys。我们也可以传入一个自己想要的顺序:

states = ['California', 'Ohio', 'Oregon', 'Texas']
obj4 = pd.Series(sdata, index=states)
obj4
California        NaN
Ohio          35000.0
Oregon        16000.0
Texas         71000.0
dtype: float64

顺序是按states里来的,但因为没有找到california,所以是NaNNaN表示缺失数据,用之后我们提到的话就用missingNA来指代。pandas中的isnullnotnull函数可以用来检测缺失数据:

pd.isnull(obj4)
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool
pd.notnull(obj4)
California    False
Ohio           True
Oregon         True
Texas          True
dtype: bool

series也有对应的方法:

obj4.isnull()
California     True
Ohio          False
Oregon        False
Texas         False
dtype: bool

关于缺失数据,在第七章还会讲得更详细一些。

series中一个有用的特色自动按index label来排序(Data alignment features):

obj3
Ohio      35000
Texas     71000
Oregon    16000
Utah       5000
dtype: int64
obj4
California        NaN
Ohio          35000.0
Oregon        16000.0
Texas         71000.0
dtype: float64
obj3 + obj4
California         NaN
Ohio           70000.0
Oregon         32000.0
Texas         142000.0
Utah               NaN
dtype: float64

这个Data alignment features(数据对齐特色)和数据库中的join相似。

series自身和它的index都有一个叫name的属性,这个能和其他pandas的函数进行整合:

obj4.name = 'population'
obj4.index.name = 'state'
obj4
state
California        NaN
Ohio          35000.0
Oregon        16000.0
Texas         71000.0
Name: population, dtype: float64

seriesindex能被直接更改:

obj
0    4
1    7
2   -5
3    3
dtype: int64
obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
obj
Bob      4
Steve    7
Jeff    -5
Ryan     3
dtype: int64

2 DataFrame

DataFrame表示一个长方形表格,并包含排好序的列,每一列都可以是不同的数值类型(数字,字符串,布尔值)。DataFrame有行索引和列索引(row index, column index);可以看做是分享所有索引的由series组成的字典。数据是保存在一维以上的区块里的。

(其实我是把dataframe当做excel里的那种表格来用的,这样感觉更直观一些)

构建一个dataframe的方法,用一个dcitdict里的值是list

data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'], 'year': [2000, 2001, 2002, 2001, 2002, 2003], 'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}frame = pd.DataFrame(data)frame
popstateyear
01.5Ohio2000
11.7Ohio2001
23.6Ohio2002
32.4Nevada2001
42.9Nevada2002
53.2Nevada2003

dataframe也会像series一样,自动给数据赋index, 而列则会按顺序排好。

对于一个较大的DataFrame,用head方法会返回前5行(注:这个函数在数据分析中经常使用,用来查看表格里有什么东西):

frame.head()
popstateyear
01.5Ohio2000
11.7Ohio2001
23.6Ohio2002
32.4Nevada2001
42.9Nevada2002

如果指定一列的话,会自动按列排序:

pd.DataFrame(data, columns=['year', 'state', 'pop'])
yearstatepop
02000Ohio1.5
12001Ohio1.7
22002Ohio3.6
32001Nevada2.4
42002Nevada2.9
52003Nevada3.2

如果你导入一个不存在的列名,那么会显示为缺失数据:

frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'], index=['one', 'two', 'three', 'four', 'five', 'six'])
frame2
yearstatepopdebt
one2000Ohio1.5NaN
two2001Ohio1.7NaN
three2002Ohio3.6NaN
four2001Nevada2.4NaN
five2002Nevada2.9NaN
six2003Nevada3.2NaN
frame2.columns
Index(['year', 'state', 'pop', 'debt'], dtype='object')

DataFrame里提取一列的话会返回series格式,可以以属性或是dict一样的形式来提取:

frame2['state']
one        Ohio
two        Ohio
three      Ohio
four     Nevada
five     Nevada
six      Nevada
Name: state, dtype: object
frame2.year
one      2000
two      2001
three    2002
four     2001
five     2002
six      2003
Name: year, dtype: int64

注意:frame2[column]能应对任何列名,但frame2.column的情况下,列名必须是有效的python变量名才行。

返回的seriesDataFrame种同样的index,而且name属性也是对应的。

对于行,要用在loc属性里用 位置或名字:

frame2.loc['three']
year     2002
state    Ohio
pop       3.6
debt      NaN
Name: three, dtype: object

列值也能通过赋值改变。比如给debt赋值:

frame2['debt'] = 16.5
frame2
yearstatepopdebt
one2000Ohio1.516.5
two2001Ohio1.716.5
three2002Ohio3.616.5
four2001Nevada2.416.5
five2002Nevada2.916.5
six2003Nevada3.216.5
frame2['debt'] = np.arange(6.)
frame2
yearstatepopdebt
one2000Ohio1.50.0
two2001Ohio1.71.0
three2002Ohio3.62.0
four2001Nevada2.43.0
five2002Nevada2.94.0
six2003Nevada3.25.0

如果把listarray赋给column的话,长度必须符合DataFrame的长度。如果把一二series赋给DataFrame,会按DataFrameindex来赋值,不够的地方用缺失数据来表示:

val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
frame2['debt'] = val
frame2
yearstatepopdebt
one2000Ohio1.5NaN
two2001Ohio1.7-1.2
three2002Ohio3.6NaN
four2001Nevada2.4-1.5
five2002Nevada2.9-1.7
six2003Nevada3.2NaN

如果列不存在,赋值会创建一个新列。而del也能像删除字典关键字一样,删除列:

frame2['eastern'] = frame2.state == 'Ohio'
frame2
yearstatepopdebteastern
one2000Ohio1.5NaNTrue
two2001Ohio1.7-1.2True
three2002Ohio3.6NaNTrue
four2001Nevada2.4-1.5False
five2002Nevada2.9-1.7False
six2003Nevada3.2NaNFalse

然后用del删除这一列:

del frame2['eastern']
frame2.columns
Index(['year', 'state', 'pop', 'debt'], dtype='object')

注意:columns返回的是一个view,而不是新建了一个copy。因此,任何对series的改变,会反映在DataFrame上。除非我们用copy方法来新建一个。

另一种常见的格式是dict中的dict

pop = {'Nevada': {2001: 2.4, 2002: 2.9},'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}

把上面这种嵌套dict传给DataFrame,pandas会把外层dictkey当做列,内层key当做行索引:

frame3 = pd.DataFrame(pop)
frame3
NevadaOhio
2000NaN1.5
20012.41.7
20022.93.6

另外DataFrame也可以向numpy数组一样做转置:

frame3.T
200020012002
NevadaNaN2.42.9
Ohio1.51.73.6

指定index

pd.DataFrame(pop, index=[2001, 2002, 2003])
NevadaOhio
20012.41.7
20022.93.6
2003NaNNaN

series组成的dict

pdata = {'Ohio': frame3['Ohio'][:-1],'Nevada': frame3['Nevada'][:2]}
pd.DataFrame(pdata)
NevadaOhio
2000NaN1.5
20012.41.7

如果DataFrameindexcolumn有自己的name属性,也会被显示:

frame3.index.name = 'year'; frame3.columns.name = 'state'
frame3
stateNevadaOhio
year
2000NaN1.5
20012.41.7
20022.93.6

values属性会返回二维数组:

frame3.values
array([[ nan,  1.5],[ 2.4,  1.7],[ 2.9,  3.6]])

如果column有不同的类型,dtype会适应所有的列:

frame2.values
array([[2000, 'Ohio', 1.5, nan],[2001, 'Ohio', 1.7, -1.2],[2002, 'Ohio', 3.6, nan],[2001, 'Nevada', 2.4, -1.5],[2002, 'Nevada', 2.9, -1.7],[2003, 'Nevada', 3.2, nan]], dtype=object)

3 Index Objects (索引对象)

pandasIndex Objects (索引对象)负责保存axis labels和其他一些数据(比如axis namenames)。一个数组或其他一个序列标签,只要被用来做构建seriesDataFrame,就会被自动转变为index

obj = pd.Series(range(3), index=['a', 'b', 'c'])
index = obj.index
index
Index(['a', 'b', 'c'], dtype='object')
index[1:]
Index(['b', 'c'], dtype='object')

index object是不可更改的:

index[1] = 'd'
---------------------------------------------------------------------------TypeError                                 Traceback (most recent call last)<ipython-input-67-676fdeb26a68> in <module>()
----> 1 index[1] = 'd'/Users/xu/anaconda/envs/py35/lib/python3.5/site-packages/pandas/indexes/base.py in __setitem__(self, key, value)1243 1244     def __setitem__(self, key, value):
-> 1245         raise TypeError("Index does not support mutable operations")1246 1247     def __getitem__(self, key):TypeError: Index does not support mutable operations

正因为不可修改,所以data structure中分享index object是很安全的:

labels = pd.Index(np.arange(3))
labels
Int64Index([0, 1, 2], dtype='int64')
obj2 = pd.Series([1.5, -2.5, 0], index=labels)
obj2
0    1.5
1   -2.5
2    0.0
dtype: float64
obj2.index is labels
True

index除了想数组,还能像大小一定的set

frame3
stateNevadaOhio
year
2000NaN1.5
20012.41.7
20022.93.6
frame3.columns
Index(['Nevada', 'Ohio'], dtype='object', name='state')
'Ohio' in frame3.columns
True
2003 in frame3.columns
False

python里的set不同,pandasindex可以有重复的labels

dup_labels = pd.Index(['foo', 'foo', 'bar', 'bar'])
dup_labels
Index(['foo', 'foo', 'bar', 'bar'], dtype='object')

在这种重复的标签中选择的话,会选中所有相同的标签。

相关文章:

pandas教程:Introduction to pandas Data Structures pandas的数据结构

文章目录 Chapter 5 Getting Started with pandas5.1 Introduction to pandas Data Structures1 Series2 DataFrame3 Index Objects (索引对象) Chapter 5 Getting Started with pandas 这样导入pandas&#xff1a; import pandas as pde:\python3.7\lib\site-packages\numpy…...

MinIO 分布式文件(对象)存储

简介 MinIO是高性能、可扩展、云原生支持、操作简单、开源的分布式对象存储产品。 在中国&#xff1a;阿里巴巴、腾讯、百度、中国联通、华为、中国移动等等9000多家企业也都在使用MinIO产品 官网地址&#xff1a;http://www.minio.org.cn/ 下载 官网下载(8.4.3版本)&#x…...

HTML表单标签

## HTML标签&#xff1a;表单标签 * 表单&#xff1a; * 概念&#xff1a;用于采集用户输入的数据的。用于和服务器进行交互。 * form&#xff1a;用于定义表单的。可以定义一个范围&#xff0c;范围代表采集用户数据的范围 * 属性&#xff1…...

【黑马程序员】SpringCloud——Eureka

文章目录 前言一、提供者与消费者1. 服务调用关系 二、远程调用的问题三、eureka 原理分析1. eureka 的作用 四、Eureka 案例1. 搭建 eureka 服务1. 服务注册1.1 注册 user-service1.2 启动 user-service3. order-service 完成服务注册 3. 服务发现1. 在 order-service 完成服务…...

目标跟踪(DeepSORT)

本文首先将介绍在目标跟踪任务中常用的匈牙利算法&#xff08;Hungarian Algorithm&#xff09;和卡尔曼滤波&#xff08;Kalman Filter&#xff09;&#xff0c;然后介绍经典算法DeepSORT的工作流程以及对相关源码进行解析。 目前主流的目标跟踪算法都是基于Tracking-by-Detec…...

2 任务2: 使用趋动云GPU进行猫狗识别实践

使用趋动云GPU进行猫狗识别实践 1 创建项目2 初始化开发环境3 调试代码4 提交离线任务5 结果集存储与下载 使用趋动云提供的免费GPU&#xff0c;进行猫狗识别实践。 虽然例程里面提供的是基于tensorflow的&#xff0c;但是你也可以使用pytorch的代码 使用这个平台的一个优点就是…...

技术分享 | app自动化测试(Android)--显式等待机制

WebDriverWait类解析 WebDriverWait 用法代码 Python 版本 WebDriverWait( driver,timeout,poll_frequency0.5,ignored_exceptionsNone) 参数解析&#xff1a; driver&#xff1a;WebDriver 实例对象 timeout: 最长等待时间&#xff0c;单位秒 poll_frequency: 检测的间…...

机器学习基础之《回归与聚类算法(5)—分类的评估方法》

问题&#xff1a;上一篇的案例&#xff0c;真的患癌症的&#xff0c;能被检查出来的概率&#xff1f; 一、精确率和召回率 1、混淆矩阵 在分类任务下&#xff0c;预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合&#xff0c;构成混淆矩阵(适…...

如何在macbook上删除文件?Mac删除文件的多种方法

在使用MacBook电脑时&#xff0c;桌面上经常会积累大量的文件&#xff0c;而这些文件可能已经不再需要或已经过时。为了保持桌面的整洁和提高电脑性能&#xff0c;我们需要及时删除这些文件。本文将介绍MacBook怎么删除桌面文件&#xff0c;以及macbook删除桌面文件快捷键。 一…...

Java代码Demo——Map根据key或value排序

Map根据key排序 升序 Demo代码&#xff1a; //使用TreeMap Map<Integer, String> map new TreeMap<>(); map.put(10, "第10名次"); map.put(15, "第15名次"); map.put(1, "第1名次"); map.put(5, "第5名次"); map.put…...

一个Linux自动备份脚本的示例

一个简单的Linux自动备份脚本的示例&#xff0c;根据需要进行自定义&#xff1a; 请确保按照您的需求修改source_dir和backup_dir为要备份的源目录和备份目录的路径。此脚本使用tar命令创建一个以当前日期命名的压缩备份文件&#xff0c;并在备份完成后检查是否成功。此外&…...

[论文阅读]PV-RCNN++

PV-RCNN PV-RCNN: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection 论文网址&#xff1a;PV-RCNN 论文代码&#xff1a;PV-RCNN 简读论文 这篇论文提出了两个用于3D物体检测的新框架PV-RCNN和PV-RCNN,主要的贡献如下: 提出P…...

测试老鸟整理,Postman加密接口测试-Rsa/Aes对参数加密(详细总结)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 一些问题 postma…...

JavaScript使用对象

对象(object)是最基本、最通用的类型&#xff0c;具有复合性结构&#xff0c;属于引用型数据&#xff0c;对象的结构具有弹性&#xff0c;内部的数据是无序的&#xff0c;每个成员被称为属性。在JavaScript中&#xff0c;对象是一个泛化的概念&#xff0c;任何值都可以转换为对…...

微带线的ABCD矩阵的推导、转换与级联-Matlab计算实例

微带线的ABCD矩阵的推导、转换与级联-Matlab计算实例 散射参数矩阵有实际的物理意义&#xff0c;但是其无法级联计算&#xff0c;但是ABCD参数和传输散射矩阵可以级联计算&#xff0c;在此先简单介绍ABCD参数矩阵的基本用法。 1、微带线的ABCD矩阵的推导 其他的一些常用的二端…...

“网站不安全”该如何解决

当我们的网站被客户访问的时候&#xff0c;经常会出现提示不安全的情况&#xff0c;导致客户的不信任&#xff0c;从而出现客户流失的现象&#xff0c;这种情况我们应该如何解决呢&#xff1f; 首先&#xff0c;我们要确定网站会出现不安全的原因&#xff0c;一般来说&#xff…...

gitlab数据备份和恢复

gitlab数据备份 sudo gitlab-rake gitlab:backup:create备份文件默认存放在/var/opt/gitlab/backups路径下&#xff0c; 生成1697101003_2023_10_12_12.0.3-ee_gitlab_backup.tar 文件 gitlab数据恢复 sudo gitlab-rake gitlab:backup:restore BACKUP1697101003_2023_10_12_…...

嵌入式Linux和stm32区别? 之间有什么关系吗?

嵌入式Linux和stm32区别? 之间有什么关系吗&#xff1f; 主要体现在以下几个方面&#xff1a; 1.硬件资源不同 单片机一般是芯片内部集成flash、ram&#xff0c;ARM一般是CPU&#xff0c;配合外部的flash、ram、sd卡存储器使用。最近很多小伙伴找我&#xff0c;说想要一些嵌…...

【Redis】String字符串类型-内部编码使用场景

文章目录 内部编码使用场景缓存功能计数功能共享会话手机验证码 内部编码 字符串类型的内部编码有3种&#xff1a; int&#xff1a;8个字节&#xff08;64位&#xff09;的⻓整型&#xff0c;存储整数embstr&#xff1a;压缩字符串&#xff0c;适用于表示较短的字符串raw&…...

电脑发热发烫,具体硬件温度达到多少度才算异常?

环境&#xff1a; 联想E14 问题描述&#xff1a; 电脑发热发烫,具体硬件温度达到多少度才算异常? 解决方案&#xff1a; 电脑硬件的温度正常范围会因设备类型和使用的具体硬件而有所不同。一般来说&#xff0c;以下是各种硬件的正常温度范围&#xff1a; CPU&#xff1a;正…...

计算机网络第4章-IPv6和寻址

IP地址的分配 为了获取一块IP地址用于一个组织的子网内&#xff0c;于是我们向ISP联系&#xff0c;ISP则会从已分给我们的更大 地址块中提供一些地址。 例如&#xff0c;ISP也许已经分配了地址块200.23.16.0/20。 该ISP可以依次将该地址块分成8个长度相等的连续地址块&…...

Lazarus安装和入门资料

azarus-2.2.6-fpc-3.2.2-win64 下载地址 Lazarus 基础教程 - Lazarus Tutorials for Beginners Lazarus Tutorial #1 - Learning programming_哔哩哔哩_bilibili https://www.devstructor.com/index.php?pagetutorials Lazarus是一款开源免费的object pascal语言RAD IDE&…...

mediapipe流水线分析 二

目标检测 Graph 一 流水线上游输入处理 1 TfLiteConverterCalculator 将输入的数据转换成tensorflow api 支持的Tensor TfLiteTensor 并初始化相关输入输出节点 &#xff0c;该类的业务主要通过 interpreter std::unique_ptrtflite::Interpreter interpreter_ nullptr; 实现…...

1.性能优化

概述 今日目标&#xff1a; 性能优化的终极目标是什么压力测试压力测试的指标 性能优化的终极目标是什么 用户体验 产品设计(非技术) 系统性能(快&#xff0c;3秒不能更久了) 后端&#xff1a;RT,TPS,并发数 影响因素01&#xff1a;数据库读写&#xff0c;RPC&#xff…...

使用Plsql+oracle client 连接 Oracle数据库

2011年入职老东家X煤集团的时候&#xff0c;在csnd上写了一篇blog&#xff0c;题目叫“什么是ERP”&#xff0c;从此跳入DBA了这个烂坑&#xff0c;目前公司的数据库一部分是Oracle&#xff0c;另一部分是MySQL的&#xff0c;少量MSSQL&#xff0c;还需要捡起来一部分&#xff…...

centos获取服务器公网ip

查看公网IP 用下面几个命令&#xff1a; #curl ifconfig.me #curl icanhazip.com #curl cip.cc...

思谋科技进博首秀:工业多模态大模型IndustryGPT V1.0正式发布

大模型技术正在引领新一轮工业革命&#xff0c;但将其应用于工业制造&#xff0c;仍面临许多挑战&#xff0c;专业知识的缺乏是关键难点。11月5日&#xff0c;香港中文大学终身教授、思谋科技创始人兼董事长贾佳亚受邀参加第六届中国国际进口博览会暨虹桥国际经济论坛开幕式。虹…...

Wsl2 Ubuntu在不安装Docker Desktop情况下使用Docker

目录 1. 前提条件 2.安装Distrod 3. 常见问题 3.1.docker compose 问题无法使用问题 3.1. docker-compose up报错 参考文档 1. 前提条件 win10 WSL2 Ubuntu(截止202308最新版本是20.04.xx) 有不少的博客都是建议直接安装docker desktop&#xff0c;这样无论在windows…...

pytorch之relu激活函数

目录 1、relu 2、relu6 3、leaky_relu 4、ELU 5、SELU 6、PReLU 1、relu ReLU&#xff08;Rectified Linear Unit&#xff09;是一种常用的神经网络激活函数&#xff0c;它在PyTorch中被广泛使用。ReLU函数接受一个输入值&#xff0c;如果该值大于零&#xff0c;则返回该…...

UML---用例图

UML–用例图 0.用例图简介 用例图是一种UML&#xff08;统一建模语言&#xff09;的图形化表示方法&#xff0c;用于描述系统的功能和行为。它可以帮助系统分析师和开发人员理解系统的需求&#xff0c;用例图由参与者、用例和它们之间的关系组成。 1.用例图的组成部分 系统…...