当前位置: 首页 > news >正文

AM@幂级数性质@幂级数和函数求解

文章目录

    • 幂级数性质
    • 四则运算性质
    • 分析性质
      • 求解和函数

幂级数性质

  • 和多项式有相似的性质
  • 本文介绍用幂级数的性质求解幂级数和函数的两个例子

四则运算性质

  • 若幂级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infin}a_{n}x^{n} n=0anxn(1)的收敛半径为 R 1 R_1 R1,和函数为 S 1 ( x ) S_1(x) S1(x)

    • 幂级数 ∑ n = 0 ∞ b n x n \sum_{n=0}^{\infin}b_{n}x^{n} n=0bnxn(2)的收敛半径为 R 2 R_2 R2,和函数为 S 2 ( x ) S_2(x) S2(x)
    • R = min ⁡ { R 1 , R 2 } R=\min\set{R_1,R_2} R=min{R1,R2}
  • 则:

    1. ∑ n = 0 ∞ a n x n ± ∑ n = 0 ∞ b n x n \sum_{n=0}^{\infin}a_{n}x^{n}\pm{\sum_{n=0}^{\infin}b_{n}x^{n}} n=0anxn±n=0bnxn= ∑ n = 0 ∞ ( a n ± b n ) x n \sum_{n=0}^{\infin}(a_{n}\pm{b_{n}})x^{n} n=0(an±bn)xn= S 1 ( x ) ± S 1 ( x ) S_1(x)\pm{S_1(x)} S1(x)±S1(x),(3) x ∈ ( − R , R ) x\in{(-R,R)} x(R,R)

    2. ( ∑ n = 0 ∞ a n x n ) ( ∑ n = 0 ∞ b n x n ) (\sum_{n=0}^{\infin}a_{n}x^{n})(\sum_{n=0}^{\infin}b_{n}x^{n}) (n=0anxn)(n=0bnxn)= ∑ n = 0 ∞ T n x n \sum_{n=0}^{\infin}{T_{n}}x^{n} n=0Tnxn= S 1 ( x ) S 2 ( x ) S_1(x)S_2(x) S1(x)S2(x)(4)

      • 多项式乘法中, n n n次项幂的系数表示为 a i b n − i a_{i}b_{n-i} aibni,其中 a i , b n − i a_{i},b_{n-i} ai,bni分别是 S 1 ( x ) S_1(x) S1(x), S 2 ( x ) S_2(x) S2(x)中的 i i i次项系数和 n − i n-i ni次项系数
      • a i x i b n − i x n − i a_{i}x^{i}b_{n-i}x^{n-i} aixibnixni= a i b n − i x n a_{i}b_{n-i}x^{n} aibnixn, i = 0 , 1 , 2 , ⋯ , n i=0,1,2,\cdots,n i=0,1,2,,n(5)
      • 若令 S 1 ( x ) S 2 ( x ) S_1(x)S_2(x) S1(x)S2(x) n n n次幂的系数为 T n T_n Tn,则 T n T_{n} Tn= ∑ i = 0 n a i b n − i \sum_{i=0}^{n}a_ib_{n-i} i=0naibni(6)
      • 因此式(4)为 ( ∑ n = 0 ∞ a n x n ) ( ∑ n = 0 ∞ b n x n ) (\sum_{n=0}^{\infin}a_{n}x^{n})(\sum_{n=0}^{\infin}b_{n}x^{n}) (n=0anxn)(n=0bnxn)= ∑ n = 0 ∞ ( ∑ i = 0 n a i b n − i ) x n \sum_{n=0}^{\infin}{(\sum_{i=0}^{n}a_ib_{n-i})}x^{n} n=0(i=0naibni)xn
    3. ∑ n = 0 ∞ a n x n ∑ n = 0 ∞ b n x n \Large{\frac{\sum_{n=0}^{\infin}a_{n}x^{n}}{\sum_{n=0}^{\infin}b_{n}x^{n}}} n=0bnxnn=0anxn= ∑ n = 0 ∞ c n x n \sum_{n=0}^{\infin}c_{n}x^{n} n=0cnxn(7)

      • 其中 c n c_{n} cn, n = 1 , 2 , ⋯ . n=1,2,\cdots. n=1,2,.的确定比乘法中 T n T_{n} Tn的确定复杂一些
        • 显然 ∑ n = 0 ∞ b n x n ⋅ ∑ n = 0 ∞ c n x n \sum_{n=0}^{\infin}b_{n}x^{n} \cdot \sum_{n=0}^{\infin}c_{n}x^{n} n=0bnxnn=0cnxn= ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infin}{a_{n}}x^{n} n=0anxn(8),而系数 c n c_n cn就是通过此方程式确定
        • 由式(4)性质可知, Q n Q_{n} Qn= ∑ i = 0 n b i c n − i \sum_{i=0}^{n}b_ic_{n-i} i=0nbicni,再比较式(8)两端系数,可知 a n a_{n} an= ∑ i = 0 n b i c n − i \sum_{i=0}^{n}b_ic_{n-i} i=0nbicni(9)
          • 分别令 n = 0 , 1 , 2 , ⋯ n=0,1,2,\cdots n=0,1,2,可以从 ( 9 ) (9) (9)产生一系列方程
            • a 0 a_0 a0= b 0 c 0 b_0c_{0} b0c0
            • a 1 a_1 a1= b 0 c 1 + b 1 c 0 b_0c_{1}+b_{1}c_{0} b0c1+b1c0
            • a 2 a_{2} a2= b 2 c 0 + b 1 c 1 + b 0 c 2 b_2c_0+b_1c_1+b_0c_2 b2c0+b1c1+b0c2
            • ⋯ \cdots
          • 依次求解方程组 n = 0 , 1 , 2 , ⋯ , k n=0,1,2,\cdots,k n=0,1,2,,k的方程,即可依次求得 c 0 , c 1 , c 2 ⋯ c_0,c_1,c_{2}\cdots c0,c1,c2
          • 上述方法式递推法求解系数 c n c_n cn,如果要求 c k c_k ck,就要求阶 k k k个方程
        • 此时式(7)的收敛域可能比原来的两个级数的收敛域小得多

分析性质

  • 和多项式类似的分项积分和分项求导性质,并且不改变收敛区间

  • 设幂级数 ∑ n = 0 ∞ a n x n \sum_{n=0}^{\infin}a_{n}x^{n} n=0anxn的和函数为 s ( x ) s(x) s(x),收敛域为 I I I

    • s ( x ) s(x) s(x) I I I上连续

    • s ( x ) s(x) s(x) I I I上可积,且有逐项积分公式(变上限积分): ∫ 0 x s ( t ) d t \int_{0}^{x}s(t)\mathrm{d}t 0xs(t)dt= ∫ 0 x [ ∑ n = 0 ∞ a n t n ] d t \int_{0}^{x}[\sum_{n=0}^{\infin}a_{n}t^{n}]\mathrm{d}t 0x[n=0antn]dt= ∑ n = 0 ∞ ∫ 0 x a n t n d t \sum_{n=0}^{\infin}\int_{0}^{x}a_{n}t^{n}\mathrm{d}t n=00xantndt= ∑ n = 0 ∞ a n n + 1 x n + 1 \sum_{n=0}^{\infin}\frac{a_{n}}{n+1}{x^{n+1}} n=0n+1anxn+1, ( x ∈ I ) (x\in{I}) (xI)

      • 积分区间为 [ 0 , x ] [0,x] [0,x]
      • 逐项积分后,所得的幂级数和原级数有相同的收敛半径
    • s ( x ) s(x) s(x) ( − R , R ) (-R,R) (R,R)内可导,且有逐项求导公式 s ′ ( x ) s'(x) s(x)= ( ∑ n = 0 ∞ a n x n ) ′ (\sum_{n=0}^{\infin}a_{n}x^{n})' (n=0anxn)= ∑ n = 0 ∞ ( a n x n ) ′ \sum_{n=0}^{\infin}(a_{n}x^{n})' n=0(anxn)= ∑ n = 0 ∞ n a n x n − 1 \sum_{n=0}^{\infin}na_{n}x^{n-1} n=0nanxn1, ( ∣ x ∣ < R ) (|x|<R) (x<R)

      • 逐项求导后所得的幂级数和原级数有相同的收敛半径

      • 注意,虽然收敛半径相同,但是收敛域不一定相同,求导可能收敛域对应得端点处不再收敛

      • 例如原幂级数的收敛域为 [ − R , R ) [-R,R) [R,R),那么求导后的半径变为 ( − R , R ) (-R,R) (R,R),显然两个区间不相等;但如果原幂级数的收敛域为 ( − R , R ) (-R,R) (R,R),那么求导后的级数收敛域不变

      • 反复应用上述结论可知, s ( x ) s(x) s(x)在其**收敛区间 ( − R , R ) (-R,R) (R,R)**内具有任意阶导数

求解和函数

  • 分析性质可以用于求解幂级数的和函数,也就是幂级数收敛于什么函数 s ( x ) s(x) s(x)
  • 第一步就是要求解收敛域,这时和函数的定义域
    • 求出收敛半径 R R R
    • 再检验 x = ± R x=\pm{R} x=±R是的敛散性,以确定收敛域

  • ∑ n = 0 ∞ x n n + 1 \sum_{n=0}^{\infin}\frac{x^{n}}{n+1} n=0n+1xn的收敛域以及和函数 s ( x ) s(x) s(x)
  • (1)
    • 判断级数类型:该级数是一个幂级数,并且是标准形
    • 确定通项的系数: a n a_n an= 1 n + 1 \frac{1}{n+1} n+11
    • 观察 a n a_{n} an考虑使用比值式考察其是否收敛(敛散性),
    • ρ \rho ρ= lim ⁡ n → ∞ n + 1 n + 2 \lim\limits_{n\to\infin}\frac{n+1}{n+2} nlimn+2n+1= 1 1 1, R = 1 ρ R=\frac{1}{\rho} R=ρ1=1
    • 说明原级数收敛,且收敛半径为 R = 1 R=1 R=1,收敛区间就是 ( − 1 , 1 ) (-1,1) (1,1)
    • 考察区间端点处,对应的常数项级数:
      • x = − 1 x=-1 x=1时,通项为 ( − 1 ) n n + 1 \frac{(-1)^{n}}{n+1} n+1(1)n,对应的常数项级数为 ∑ n = 0 ∞ ( − 1 ) n n + 1 \sum_{n=0}^{\infin}\frac{(-1)^{n}}{n+1} n=0n+1(1)n= 1 − 1 2 + ⋯ 1-\frac{1}{2}+\cdots 121+
        • 这时一个交错级数,由Leibniz定理, 1 n + 1 \frac{1}{n+1} n+11递减,且 1 n + 1 → 0 ( n → ∞ ) \frac{1}{n+1}\to{0}(n\to{\infin}) n+110(n)
        • 可知该级数收敛
      • x = 1 x=1 x=1时,幂级数称为 ∑ n = 0 ∞ 1 n + 1 \sum_{n=0}^{\infin}\frac{1}{n+1} n=0n+11= ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infin}\frac{1}{n} n=1n1,是调和级数,其显然是发散的
      • 综上,收敛域为 I = [ − 1 , 1 ) I=[-1,1) I=[1,1)
  • (2)
    • s ( x ) s(x) s(x)就是在收敛域内,要将级数形式化简为非求和形式
    • s ( x ) s(x) s(x)= ∑ n = 0 ∞ x n n + 1 \sum_{n=0}^{\infin}\frac{x^{n}}{n+1} n=0n+1xn(1), x ∈ [ − 1 , 1 ) x\in[-1,1) x[1,1)
      • 式(1)两边同时乘以 x x x, x s ( x ) xs(x) xs(x)= ∑ n = 0 ∞ x n + 1 n + 1 \sum_{n=0}^{\infin}\frac{x^{n+1}}{n+1} n=0n+1xn+1= ∑ n = 1 ∞ x n n \sum_{n=1}^{\infin}\frac{x^{n}}{n} n=1nxn(2), x ∈ [ − 1 , 1 ) x\in[-1,1) x[1,1)
      • 对(2)两边求导,并由逐项求导公式,得 ( x s ( x ) ) ′ (xs(x))' (xs(x))= ∑ n = 1 ∞ x n − 1 \sum_{n=1}^{\infin}{x^{n-1}} n=1xn1= 1 + x + x 2 + ⋯ + x n + ⋯ 1+x+x^2+\cdots+x^{n}+\cdots 1+x+x2++xn+, x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1)(3)
        • Note:求导后收敛区间为 ∣ x ∣ < 1 |x|<1 x<1,即 x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1)
      • 而我们知道常用级数 1 1 − x \frac{1}{1-x} 1x1= 1 + x + x 2 + ⋯ + x n + ⋯ 1+x+x^2+\cdots+x^{n}+\cdots 1+x+x2++xn+, x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1)(4)
      • 比较(3,4)可得 ( x s ( x ) ) ′ (xs(x))' (xs(x))= 1 1 − x \frac{1}{1-x} 1x1, x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1)(5)
        • 对上式从 0 0 0 x x x积分,得 x s ( x ) xs(x) xs(x)= ∫ 0 x 1 1 − t d t \int_{0}^{x}\frac{1}{1-t}\mathrm{d}t 0x1t1dt= − ln ⁡ ∣ t − 1 ∣ ∣ 0 x -\ln|t-1||_{0}^{x} lnt1∣0x= − ln ⁡ ∣ x − 1 ∣ -\ln|x-1| lnx1∣ (6), x ∈ [ − 1 , 1 ) x\in[-1,1) x[1,1)
      • 方法2:
        • 这里可以不处理为 x s ( x ) xs(x) xs(x),而直接变形为: s ( x ) s(x) s(x)= 1 x ∑ n = 0 ∞ x n + 1 n + 1 \frac{1}{x}\sum_{n=0}^{\infin}\frac{x^{n+1}}{n+1} x1n=0n+1xn+1= 1 x ∑ n = 0 ∞ ∫ 0 n t n d t \frac{1}{x}\sum_{n=0}^{\infin}\int_{0}^{n}t^{n}\mathrm{d}t x1n=00ntndt= 1 x ∫ 0 n ( ∑ n = 0 ∞ t n ) d t \frac{1}{x}\int_{0}^{n}(\sum_{n=0}^{\infin}t^{n})\mathrm{d}t x10n(n=0tn)dt
        • 再利用常用已知级数 ∑ n = 0 ∞ t n \sum_{n=0}^{\infin}t^{n} n=0tn= 1 1 − t \frac{1}{1-t} 1t1, t ∈ ( − 1 , 1 ) t\in(-1,1) t(1,1),得 s ( x ) s(x) s(x)= 1 x ∫ 0 n ( 1 1 − t ) d t \frac{1}{x}\int_{0}^{n}(\frac{1}{1-t})\mathrm{d}t x10n(1t1)dt,同样得到式(6)
      • x ≠ 0 x\neq{0} x=0时,有 s ( x ) s(x) s(x)= − 1 x ln ⁡ ( 1 − x ) -\frac{1}{x}\ln(1-x) x1ln(1x)(7)
      • x = 0 x=0 x=0,
        • s ( 0 ) = a 0 = 1 s(0)=a_{0}=1 s(0)=a0=1
          • ∑ n = 0 ∞ 0 n n + 1 \sum_{n=0}^{\infin}\frac{0^{n}}{n+1} n=0n+10n= 0 0 0 + 1 \frac{0^{0}}{0+1} 0+100+ ∑ n = 1 ∞ 0 n n + 1 \sum_{n=1}^{\infin}\frac{0^{n}}{n+1} n=1n+10n= 1 + 0 1+0 1+0= 1 1 1,这里约定 0 0 = 1 0^{0}=1 00=1
        • 或者也可以由 s ( x ) s(x) s(x)是连续的性质可以由极限式 lim ⁡ x → 0 ( − 1 x ln ⁡ ( 1 − x ) ) \lim\limits_{x\to{0}}(-\frac{1}{x}\ln(1-x)) x0lim(x1ln(1x))= lim ⁡ x → 0 ( − − x x ) \lim\limits_{x\to{0}}(-\frac{-x}{x}) x0lim(xx)=1,从而 s ( 0 ) s(0) s(0)=1
          • ln ⁡ ( 1 − x ) ∼ − x \ln(1-x)\sim{-x} ln(1x)x, ( − x → 0 ) (-x\to{0}) (x0)
          • 或者洛必达法则计算

  • u n u_{n} un= ( − 1 ) n − 1 n x n − 1 (-1)^{n-1}nx^{n-1} (1)n1nxn1,求幂级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infin} u_{n} n=1un的和函数
  • (1)求收敛半径
    • 方法1:
      • ∣ u n ∣ |u_{n}| un= ∣ n x n − 1 ∣ |nx^{n-1}| nxn1, ∣ u n ∣ n \sqrt[n]{|u_{n}|} nun = ∣ x ∣ n x − 1 n |x|\sqrt[n]{nx^{-1}} xnnx1
      • lim ⁡ n → ∞ u n n \lim\limits_{n\to{\infin}}\sqrt[n]{u_{n}} nlimnun = lim ⁡ n → ∞ ∣ u n ∣ n \lim\limits_{n\to{\infin}}\sqrt[n]{|u_{n}|} nlimnun = ∣ x ∣ |x| x,当 ∣ x ∣ < 1 |x|<1 x<1时,级数收敛,所以收敛半径为 R = 1 R=1 R=1
    • 方法2:
      • 幂级数的系数为 a n a_{n} an= ( − 1 ) n − 1 n (-1)^{n-1}n (1)n1n, ∣ a n + 1 a n ∣ |\frac{a_{n+1}}{a_{n}}| anan+1= n + 1 n \frac{n+1}{n} nn+1
      • 从而 ρ \rho ρ= lim ⁡ n → ∞ ∣ a n + 1 a n ∣ \lim\limits_{n\to{\infin}}|\frac{a_{n+1}}{a_{n}}| nlimanan+1= 1 1 1,半径为 R = 1 ρ R=\frac{1}{\rho} R=ρ1=1
    • 方法3:(最为方便)
      • ∣ a n ∣ n \sqrt[n]{|a_n|} nan = n n \sqrt[n]{n} nn
      • 从而 ρ \rho ρ= lim ⁡ n → ∞ ∣ a n ∣ \lim\limits_{n\to{\infin}}\sqrt{|a_n|} nliman = lim ⁡ n → ∞ n n \lim\limits_{n\to{\infin}}\sqrt[n]{n} nlimnn = 1 1 1
  • (2)求收敛域:
    • x = − 1 x=-1 x=1时,得常数项级数 ∑ n = 1 ∞ n \sum_{n=1}^{\infin}n n=1n,显然发散
    • x = 1 x=1 x=1,时,得常数项级数 ∑ n = 1 ∞ ( − 1 ) n − 1 n \sum_{n=1}^{\infin}(-1)^{n-1}n n=1(1)n1n,此级数发散
    • 事实上, x = ± 1 x=\pm{1} x=±1时,两个级数的一般项在 n → ∞ n\to{\infin} n时不趋于0,所以发散
    • 所以收敛域为 ( − 1 , 1 ) (-1,1) (1,1)
  • (3)确定和函数
    • s ( x ) s(x) s(x)= ∑ n = 1 ∞ u n \sum_{n=1}^{\infin} u_{n} n=1un, x ∈ ( − 1 , 1 ) x\in{(-1,1)} x(1,1)
    • 两边积分作 [ 0 , x ] [0,x] [0,x]区间上的积分: ∫ 0 x s ( t ) d t \int_{0}^{x}s(t)\mathrm{d}t 0xs(t)dt= ∑ n = 1 ∞ ∫ 0 x ( − 1 ) n − 1 n t n − 1 d t \sum_{n=1}^{\infin} \int_{0}^{x}(-1)^{n-1}nt^{n-1}\mathrm{d}t n=10x(1)n1ntn1dt= ∑ n = 1 ∞ ( − 1 ) n − 1 x n \sum_{n=1}^{\infin}(-1)^{n-1}x^{n} n=1(1)n1xn= x − x 2 + x 3 − ⋯ x-x^2+x^3-\cdots xx2+x3(1)
      • 考虑常用的已知级数 1 1 − x \frac{1}{1-x} 1x1= 1 + x + x 2 + x 3 + ⋯ 1+x+x^2+x^3+\cdots 1+x+x2+x3+(2),有 1 1 − ( − x ) \frac{1}{1-(-x)} 1(x)1= 1 − x + x 2 − x 3 + ⋯ 1-x+x^2-x^3+\cdots 1x+x2x3+= 1 1 + x \frac{1}{1+x} 1+x1(3)
      • 可知式(1)可以表示为 − ( 1 1 + x − 1 ) -(\frac{1}{1+x}-1) (1+x11)= x 1 + x \frac{x}{1+x} 1+xx
      • 因此 ∫ 0 x s ( t ) d x \int_{0}^{x}s(t)\mathrm{d}x 0xs(t)dx= x 1 + x \frac{x}{1+x} 1+xx,两边求导,得 s ( x ) s(x) s(x)= 1 + x − x ( x + 1 ) 2 \frac{1+x-x}{(x+1)^2} (x+1)21+xx= 1 ( 1 + x ) 2 \frac{1}{(1+x)^2} (1+x)21, x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1)

相关文章:

AM@幂级数性质@幂级数和函数求解

文章目录 幂级数性质四则运算性质分析性质求解和函数例例 幂级数性质 和多项式有相似的性质本文介绍用幂级数的性质求解幂级数和函数的两个例子 四则运算性质 若幂级数 ∑ n 0 ∞ a n x n \sum_{n0}^{\infin}a_{n}x^{n} ∑n0∞​an​xn(1)的收敛半径为 R 1 R_1 R1​,和函数为…...

PHP低版本安全问题

目录 1、PHP弱类型问题 1.1 MD5、 SHA1 弱比较问题 1.2 数组 0 1&#xff09;函数无法处理数组&#xff0c;返回0 2&#xff09;strcmp 2、特殊字符串导致的问题 2.1 "ffifdyop" 与 md5(string,raw) 2.2 ereg函数漏洞&#xff1a;00 截断 3、正则匹配问…...

结构体——C语言初阶

一.结构体的声明&#xff1a; &#xff08;1&#xff09;结构的基础知识&#xff1a; 结构体是一种构造数据类型把不同类型的数据组合成一个整体结构体是一些值的集合&#xff0c;这些值称为成员变量。结构的每个成员可以是不同类型的变量需要注意的是&#xff0c;结构体是一种…...

基于django电影推荐系统

基于django电影推荐系统 摘要 该Django电影推荐系统是一个简单而基础的框架&#xff0c;旨在展示系统的基本组件。系统包括两个主要模型&#xff0c;即Movie和Rating&#xff0c;用于存储电影信息和用户评分。视图层包括展示电影列表和电影详情的功能&#xff0c;使用模板进行页…...

【问题处理】WPS提示不能启动此对象的源应用程序如何处理?

哈喽&#xff0c;大家好&#xff0c;我是雷工&#xff01; 最近在用WPS打开word文件中&#xff0c;插入的Excel附件时&#xff0c;无法打开&#xff0c;提示&#xff1a;“不能启动此对象的源应用程序”。 经过上网查找处理办法&#xff0c;尝试解决&#xff0c;现将解决过程记…...

UE 程序化网格 计算横截面

首先在构造函数内加上程序化网格&#xff0c;然后复制网格体到程序化网格组件上&#xff0c;将Static Mesh&#xff08;类型StaticMeshActor&#xff09;的静态网格体组件给到程序化网格体上 然后把StaticMesh&#xff08;类型为StaticMeshActor&#xff09;Instance暴漏出去 …...

【Spring】IoC容器的一些总结与补充

文章目录 1. 创建容器的两种方式相对路径导入绝对路径导入 2. 获取Bean的三种方式getBean后强转类型getBean内写明类别根据类别获取bean 3. 容器层次结构4. BeanFactory5. bean的总结6. 注入的总结 1. 创建容器的两种方式 相对路径导入 ApplicationContext ctx new ClassPat…...

Java GUI实现五子棋游戏

五子棋是一种双人对弈的棋类游戏&#xff0c;通常在棋盘上进行。棋盘为 1515 的方格&#xff0c;黑白双方各执棋子&#xff0c;轮流在棋盘的格点上落子&#xff0c;先在横、竖、斜线上形成五个相连的同色棋子者获胜。五子棋规则简单&#xff0c;易学难精&#xff0c;兼具攻防和…...

Python 集成 Nacos 配置中心

Python 集成 Nacos 配置中心 下载 Nacos 官方 pyhton 库 pip install nacos-sdk-python # 指定国内阿里云镜像源 pip3 install nacos-sdk-python -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com配置 Nacos 相关信息 Global:nacos:port: 8848…...

Debian 11 更新 Node.js 版本

发布于 2023-07-14 在 https://chenhaotian.top/debian/d-upd-nodejs/ 步骤 从 NodeSource 服务下载需要的 Node.js 安装脚本。注意更换版本号。当前的 LTS 版本是 18.x curl -sL https://deb.nodesource.com/setup_18.x | sudo -E bash -现在可以直接从 apt 安装&#xff0…...

python 对图像进行聚类分析

import cv2 import numpy as np from sklearn.cluster import KMeans import time# 中文路径读取 def cv_imread(filePath, cv2_falgcv2.COLOR_BGR2RGB): cv_img cv2.imdecode(np.fromfile(filePath, dtypenp.uint8), cv2_falg) return cv_img# 自定义装饰器计算时间 def…...

程序员导航站

探路者 hello.alluniverse.vip 开发者导航 - Pro Developer网站导航 探路者是一款极简导航工具&#xff0c;致力于收录的每个站点都有其独特的作用。同时支持自定义导航&#xff0c;让用户快速实现个性化的导航站点。 特性概述 免费ChatGPT 装机必备 开发工具 Git精选项目 …...

BIO、NIO、AIO三者的区别及其应用场景(结合生活例子,简单易懂)

再解释三者之前我们需要先了解几个概念&#xff1a; 阻塞、非阻塞&#xff1a;是相较于线程来说的&#xff0c;如果是阻塞则线程无法往下执行&#xff0c;不阻塞&#xff0c;则线程可以继续往下 执行。同步、异步&#xff1a;是相较于IO来说的&#xff0c;同步需要等待IO操作完…...

深度学习YOLO图像视频足球和人体检测 - python opencv 计算机竞赛

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络4 Yolov5算法5 数据集6 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习YOLO图像视频足球和人体检测 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非…...

系列七、JVM的内存结构【堆(Heap)】

一、概述 一个JVM实例只存在一个堆内存&#xff0c;堆内存的大小是可以手动调节的。类加载器读取了类文件后&#xff0c;需要把类、方法、常变量放到堆内存中&#xff0c;保存所有引用类型的真实信息&#xff0c;以方便执行器执行&#xff0c;堆内存分为三个部分&#xff0c;即…...

什么是Selenium?如何使用Selenium进行自动化测试?

什么是 Selenium&#xff1f; Selenium 是一种开源工具&#xff0c;用于在 Web 浏览器上执行自动化测试&#xff08;使用任何 Web 浏览器进行 Web 应用程序测试&#xff09;。   等等&#xff0c;先别激动&#xff0c;让我再次重申一下&#xff0c;Selenium 仅可以测试Web应用…...

【蓝桥杯 第十五届模拟赛 Java B组】训练题(A - I)

目录 A、求全是字母的最小十六进制数 B、Excel表格组合 C、求满足条件的日期 D、 取数字 - 二分 &#xff08;1&#xff09;暴力 &#xff08;2&#xff09;二分 E、最大连通块 - bfs F、哪一天&#xff1f; G、信号覆盖 - bfs &#xff08;1&#xff09;bfs&#xf…...

【数据结构】手撕双向链表

目录 前言 1. 双向链表 带头双向循环链表的结构 2. 链表的实现 2.1 初始化 2.2 尾插 2.3 尾删 2.4 头插 2.5 头删 2.6 在pos位置之前插入 2.7 删除pos位置 3.双向链表完整源码 List.h List.c 前言 在上一期中我们介绍了单链表&#xff0c;也做了一些练习题&…...

性能测试 —— Jmeter接口处理不低于200次/秒-场景

需求&#xff1a;期望某个接口系统的处理能力不低于200次/秒&#xff0c;如何设计&#xff1f; ①这个场景是看服务器对某个接口的TPS值是否能大于等于200&#xff0c;就可以了&#xff1b; ②系统处理能力&#xff1a;说的就是我们性能测试中的TPS&#xff1b; ③只要设计一…...

Qt中使用QNetworkAccessManager类发送https请求时状态码返回0

前言 在项目开发中&#xff0c;碰到一个问题&#xff0c;使用QNetworkAccessManager类对象发送https请求时&#xff0c;状态码一直返回0&#xff0c;抓包分析看请求响应也是正常的。费了好大劲终于搞定了&#xff0c;主要是两个原因导致的。 原因一&#xff1a;未设置支持SSL…...

Linux - 物理内存管理 - memmap

说明 裁减内核预留内存占用&#xff0c;在启动log中&#xff0c;发现memmap占用了大块内存&#xff08;446个pages&#xff09;。 On node 0 totalpages: 32576 memblock_alloc_try_nid: 1835008 bytes align0x40 nid0 from0x0000000000000000 max_addr0x0000000000000000 al…...

Python爬虫动态ip代理防止被封的方法

目录 前言 一、什么是动态IP代理&#xff1f; 二、如何获取代理IP&#xff1f; 1. 付费代理IP 2. 免费代理IP 3. 自建代理IP池 三、如何使用代理IP爬取数据&#xff1f; 1. 使用requests库设置代理IP 2. 使用urllib库设置代理IP 3. 使用selenium库设置代理IP 四、常…...

01Urllib

1.什么是互联网爬虫&#xff1f; 如果我们把互联网比作一张大的蜘蛛网&#xff0c;那一台计算机上的数据便是蜘蛛网上的一个猎物&#xff0c;而爬虫程序就是一只小蜘蛛&#xff0c;沿着蜘蛛网抓取自己想要的数据 解释1&#xff1a;通过一个程序&#xff0c;根据Url(http://www.…...

python爬取酷我音乐 根据歌名进行爬取

# _*_ coding:utf-8 _*_ # 开发工具:PyCharm # 公众号:小宇教程import urllib.parse from urllib.request import urlopen import json import time import sys import osdef Time_1...

【深度学习】吴恩达课程笔记(五)——超参数调试、batch norm、Softmax 回归

笔记为自我总结整理的学习笔记&#xff0c;若有错误欢迎指出哟~ 【吴恩达课程笔记专栏】 【深度学习】吴恩达课程笔记(一)——深度学习概论、神经网络基础 【深度学习】吴恩达课程笔记(二)——浅层神经网络、深层神经网络 【深度学习】吴恩达课程笔记(三)——参数VS超参数、深度…...

腾讯云轻量级服务器和云服务器什么区别?轻量服务器是干什么用的

随着互联网的迅速发展&#xff0c;服务器成为了许多人必备的工具。然而&#xff0c;面对众多的服务器选择&#xff0c;我们常常会陷入纠结之中。在这篇文章中&#xff0c;我们将探讨轻量服务器和标准云服务器的区别&#xff0c;帮助您选择最适合自己需求的服务器。 腾讯云双十…...

解决:虚拟机远程连接失败

问题 使用FinalShell远程连接虚拟机的时候连接不上 发现 虚拟机用的VMware&#xff0c;Linux发行版是CentOs 7&#xff0c;发现在虚拟机中使用ping www.baidu.com是成功的&#xff0c;但是使用FinalShell远程连接不上虚拟机&#xff0c;本地网络也ping不通虚拟机&#xff0c…...

SpringBoot项目集成发邮件功能

1&#xff1a;引入依赖2&#xff1a;配置设置3&#xff1a;授权码获取&#xff1a;4&#xff1a;核心代码5&#xff1a;postman模拟验证6&#xff1a;安全注意 1&#xff1a;引入依赖 <dependency><groupId>org.apache.commons</groupId><artifactId>c…...

【Spring篇】使用注解进行开发

&#x1f38a;专栏【Spring】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【如愿】 &#x1f970;欢迎并且感谢大家指出小吉的问题 文章目录 &#x1f33a;原代码&#xff08;无注解&#xff09;&#x1f384;加上注解⭐两个注…...

Flink(六)【DataFrame 转换算子(下)】

前言 今天学习剩下的转换算子&#xff1a;分区、分流、合流。 每天出来自学是一件孤独又充实的事情&#xff0c;希望多年以后回望自己的大学生活&#xff0c;不会因为自己的懒惰与懈怠而悔恨。 回答之所以起到了作用&#xff0c;原因是他们自己很努力。 …...

【2023春李宏毅机器学习】生成式学习的两种策略

文章目录 1 各个击破2 一步到位3 两种策略的对比 生成式学习的两种策略&#xff1a;各个击破、一步到位 对于文本生成&#xff1a;把每一个生成的元素称为token&#xff0c;中文当中token指的是字&#xff0c;英文中的token指的是word piece。比如对于unbreakable&#xff0c;他…...

Android13 adb 无法连接?

Android13 adb 无法连接? 文章目录 Android13 adb 无法连接?一、前言二、替换adbGoogle 官网对adb的介绍&#xff1a;Google 提供的adb tools的下载&#xff1a; 三、总结1、adb connect 连接后显示offline2、输入adb devices 报错&#xff1a;版本不匹配导致3、adb常用命令4…...

Ubuntu 20.04 调整交换分区大小

Ubuntu 调整交换分区大小 一、系统情况二、去除旧的交换分区文件三、配置并启用交换分区四、查看swap文件大小 一、系统情况 Ubuntu &#xff1a;Ubuntu 20.04.6 LTS 交换分区位置&#xff1a; cat /proc/swaps二、去除旧的交换分区文件 去掉旧的交换分区有两个步骤&#x…...

将Agent技术的灵活性引入RPA,清华等发布自动化智能体ProAgent

近日&#xff0c;来自清华大学的研究人员联合面壁智能、中国人民大学、MIT、CMU 等机构共同发布了新一代流程自动化范式 “智能体流程自动化” Agentic Process Automation&#xff08;APA&#xff09;&#xff0c;结合大模型智能体帮助人类进行工作流构建&#xff0c;并让智能…...

高济健康:数字化科技创新与新零售碰撞 助推医疗产业优化升级

近日&#xff0c;第六届中国国际进口博览会在上海圆满落幕&#xff0c;首次亮相的高济健康作为一家专注大健康领域的疾病和健康管理公司&#xff0c;在本届进博会上向业内外展示了围绕“15分钟步行健康生活圈”构建进行的全域数字化升级成果。高济健康通过数字化科技创新与新零…...

SystemVerilog学习 (5)——接口

一、概述 验证一个设计需要经过几个步骤&#xff1a; 生成输入激励捕获输出响应决定对错和衡量进度 但是&#xff0c;我们首先需要一个合适的测试平台&#xff0c;并将它连接到设计上。 测试平台包裹着设计,发送激励并且捕获设计的输出。测试平台组成了设计周围的“真实世界”,…...

vue3插槽的使用

什么是插槽 Vue 3 插槽&#xff08;Slots&#xff09;是一个强大的工具&#xff0c;用于在组件之间传递内容和逻辑。通过使用插槽&#xff0c;我们可以将子组件中的内容插入到父组件中的特定位置。本篇文章将总结 Vue 3 插槽的基本用法、特点以及使用场景。 基本用法 插槽分为…...

IPTABLES问题:DNAT下如何解决内网访问内部服务器问题

这个问题&#xff0c;困扰了我几年了&#xff0c;今天终于得到解决。 问题是这样的&#xff0c;在局域网内部有一台服务器&#xff0c;通过IPTABLES的网关提供对外服务&#xff0c;做过IPTABLES网关的人都知道&#xff0c;这很容易做到&#xff0c;只要在网关机器上写一个DNAT…...

异步任务线程池——最优雅的方式创建异步任务

对于刚刚从校园出来的菜鸡选手很容易写出自以为没问题的屎山代码&#xff0c;可是当上线后就会立即暴露出问题&#xff0c;这说到底还是基础不够扎实&#xff01;只会背八股文&#xff0c;却不理解&#xff0c;面试头头是道&#xff0c;一旦落地就啥也不是。此处&#xff0c;抛…...

uniapp 跨页面传值及跨页面方法调用

uniapp 跨页面传值及跨页面方法调用 1、跨页面传值 使用全局方法监听uni.$emit、uni.$on、uni.$off 发布、监听、移除 methods: {addFun(){let data [1]uni.navigateBack({ // 返回上一页delta: 1})uni.$emit(successFun,{data}) // 传值} }监听页 onLoad() {uni.$on(succ…...

无线物理层安全大作业

这个标题很帅 Beamforming Optimization for Physical Layer Security in MISO Wireless NetworksProblem Stateme![在这里插入图片描述](https://img-blog.csdnimg.cn/58ebb0df787c4e23b0c7be4189ebc322.png) Beamforming Optimization for Physical Layer Security in MISO W…...

目标检测标注工具AutoDistill

引言 在快速发展的机器学习领域&#xff0c;有一个方面一直保持不变&#xff1a;繁琐和耗时的数据标注任务。无论是用于图像分类、目标检测还是语义分割&#xff0c;长期以来人工标记的数据集一直是监督学习的基础。 然而&#xff0c;由于一个创新性的工具 AutoDistill&#x…...

关于SPJ表的数据库作业

打字不易&#xff0c;且复制且珍惜 建表 use 库名;create table S( --供应商 SNO char(6) not null, SNAME char(10) not null, STATUS INT, CITY char(10), primary key(SNO));create table P( --零件 PNO char(6) not null, PNAME char(12)not null, COLOR char(4), WEIGHT…...

【Nacos】配置管理、微服务配置拉取、实现配置热更新、多环境配置

&#x1f40c;个人主页&#xff1a; &#x1f40c; 叶落闲庭 &#x1f4a8;我的专栏&#xff1a;&#x1f4a8; c语言 数据结构 javaEE 操作系统 Redis 石可破也&#xff0c;而不可夺坚&#xff1b;丹可磨也&#xff0c;而不可夺赤。 Nacos 一、nacos实现配置管理1.1 统一配置管…...

HTML5学习系列之网页图像

HTML5学习系列之网页图像 前言定义图像定义流定义图标 总结 前言 学习记录 定义图像 标签可以直接把图像插入网页中。 <img src"xx" alt"xx"/>src&#xff1a;显示图像的URLalt&#xff1a;设置图像的替代文本height、width&#xff1a;图像的高度…...

go语言学习之旅之Go语言数据类型

学无止境&#xff0c;今天学习Go 语言数据类型 Go&#xff08;或Golang&#xff09;是一种静态类型语言&#xff0c;这意味着变量的数据类型必须显式声明&#xff0c;并且在运行时不能更改。以下是Go中的一些基本数据类型&#xff1a; 这里仅介绍最常用的类型 数值类型: int: …...

Day49 力扣单调栈 : 739. 每日温度 |496.下一个更大元素 I

Day49 力扣单调栈 : 739. 每日温度 &#xff5c;496.下一个更大元素 I 739. 每日温度第一印象看完题解的思路什么是单调栈?我的总结 实现中的苦难感悟代码 496.下一个更大元素 I第一印象看完题解的思路实现中的困难感悟代码 739. 每日温度 今天正式开始单调栈&#xff0c;这是…...

实用篇-ES-RestClient查询文档

一、快速入门 上面的查询文档都是依赖kibana&#xff0c;在浏览器页面使用DSL语句去查询es&#xff0c;如何用java去查询es里面的文档(数据)呢 我们通过match_all查询来演示基本的API&#xff0c;注意下面演示的是 match_all查询&#xff0c;也叫基础查询 首先保证你已经做好了…...

2023年第九届数维杯国际大学生数学建模挑战赛

2023年第九届数维杯国际大学生数学建模挑战赛正在火热进行&#xff0c;小云学长又在第一时间给大家带来最全最完整的思路代码解析&#xff01;&#xff01;&#xff01; 下面是数维杯B题思路解析&#xff1a; 前面三问主要是绘制趋势图、散点图等这些比较简单的统计学分析方法…...

TensorRT基础知识及应用【学习笔记(十)】

这篇博客为修改过后的转载&#xff0c;因为没有转载链接&#xff0c;所以选了原创 文章目录 一、准备知识1.1 环境配置A. CUDA DriverB. CUDAC. cuDNND. TensorRT 1.2 编程模型 二、构建阶段2.1 创建网络定义2.2 配置参数2.3 生成Engine2.4 保存为模型文件2.5 释放资源 三、运…...