当前位置: 首页 > news >正文

高数:极限的定义

目录

极限的定义:

 数列极限的几何意义:

由极限的定义得出的极限的两个结论:

 ​编辑

极限的第三个结论:

 例题

方法1: ​编辑

方法2: ​编辑

方法3:

​编辑 


极限的定义:

 如何理解呢?

极限的通俗理解:

 用数列的语言来说:

当数列的项数n无限增大时,数列的项要多接近就有多接近与a。

 我们如何理解?

答:首先,我们要清楚,极限是一个无限的过程,对于无限的过程,我们要以有限的形式进行表达,上图就是我们对于极限的有限表达。

 |Xn-a|是什么意思?

答:首先要清楚Xn的意思是数列的第n项,a表示我们的极限值,所以 |Xn-a|表示我们数列的项和极限值的接近程度。

 这是什么意思?

答:

 为什么要使用'任意'符号?

答:

这里是什么意思?

答:存在N,让N以后的项无限接近于常数a,这个N其实是不存在的,因为极限是一个无限的过程,我们假设N存在,N之后的元素是无限接近于常数a的,所以N只是用来刻画n无限增大以至于无限接近于常数a的这个过程。

 数列极限的几何意义:

等价于:

 

 这时候就形成一个领域:

 我们可以把N当作数列有限项与无限项的分割线:

 在N之后的数列中的项是放在领域之内的:

 在领域中的无限项表示无限接近于极限值a。

 一句话总结数列极限的定义:

由极限的定义得出的极限的两个结论:

 

 我们对结论1进行阐述:

答:a表示我们数列的极限,当b<a时,也就是b小于数列的极限,存在N,这个N之后的无限项全部无限接近于a值,所以当n大于N时,对应的项全部无限接近于a值,而b<a,则N之后所有的项都大于b。

我们对结论2进行阐述:

答:a表示数列的极限,当c>a时,也就是c大于数列的极限,所以N之后的无限项全部无限接近于a值,但是比a值小,因为c值比a值大,所以N之后的无限项全部小于c值。

极限的第三个结论:

数列Xn的极限与数列的前n项无关。

 Xn+1相当于去掉了数列的第一项,数列的第一项并不影响我们的极限值。

所以:

 我们之前知道一个结论:单调有界一定有极限。

单调有界不一定要从第一项就开始单调,在某一段区间上单调他也有极限。

例题1:

结果依然为1,因为右式是数列Xn的奇数部分,也是原来数列的部分项,所以又叫右式为数列Xn的奇数列。

奇数列和偶数列都是原来数列的部分项,所以奇数列和偶数列的极限也等于原数列的极限值a。

所以数列有极限可以推导出数列的奇数列和偶数列都有极限,但是数列的奇数列或者偶数列都有极限可以推导出数列有极限吗?

答:并不能,例如:

 数列的奇数列为:

奇数列全为-1,所以奇数列的极限值也为-1.

数列的偶数列为: 

 

 偶数列全为1,所以偶数列的极限值也为1.

虽然奇数列和偶数列都有极限值,但是他们的极限值不同,所以无法推导出数列有极限。

当奇数列和偶数列都有极限值,并且奇数列和偶数列的极限值相同的情况下==>数列有极限。

答:因为奇数列和偶数列虽然是数列的部分列,但是这两个部分列的集合包括了数列的所有项,所有的项的极限值都以a为极限,则该数列的极限值为a。

 例题

方法1: 

方法2: 

方法3:

 

 

相关文章:

高数:极限的定义

目录 极限的定义&#xff1a; 数列极限的几何意义&#xff1a; 由极限的定义得出的极限的两个结论&#xff1a; ​编辑 极限的第三个结论&#xff1a; 例题 方法1&#xff1a; ​编辑 方法2&#xff1a; ​编辑 方法3&#xff1a; ​编辑 极限的定义&#xff1a; 如何理…...

大数据技术之Hadoop

第1章 Hadoop概述1.1 Hadoop是什么1.2 Hadoop发展历史&#xff08;了解&#xff09;1.3 Hadoop三大发行版本&#xff08;了解&#xff09;Hadoop三大发行版本&#xff1a;Apache、Cloudera、Hortonworks。Apache版本最原始&#xff08;最基础&#xff09;的版本&#xff0c;对于…...

一文带你搞懂Go语言函数选项模式,Go函数一等公民。

前言 通过这篇文章《为什么说Go的函数是”一等公民“》&#xff0c;我们了解到了什么是“一等公民”&#xff0c;以及都具备哪些特性&#xff0c;同时对函数的基本使用也更加深入。 本文重点介绍下Go设计模式之函数选项模式&#xff0c;它得益于Go的函数是“一等公民”&#…...

Window.location 详细介绍

如果你需要获取网站的 URL 信息&#xff0c;那么 window.location 对象就是为你准备的。使用它提供的属性来获取当前页面地址的信息&#xff0c;或使用其方法进行某些页面的重定向或刷新。 https://www.samanthaming.com/tidbits/?filterJS#2 window.location.origin → htt…...

js侧滑显示删除按钮

效果图&#xff1a; <!DOCTYPE html> <html><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0, maximum-scale1.0, user-scalableno"><title>js侧滑显示删…...

Python - DIY - 使用dump取json某些键值对合成新的json文件

Python - Json处理前言&#xff1a;应用场景&#xff1a;基本工具&#xff1a;文件操作&#xff1a;打开文件&#xff1a;写文件&#xff1a;读文件&#xff1a;关闭文件并刷新缓冲区&#xff1a;Json字符串和字典转换&#xff1a;json.loads()&#xff1a;json.dumps():Json文…...

深度剖析指针(中)——“C”

各位CSDN的uu们你们好呀&#xff0c;今天小雅兰的内容仍旧是深度剖析指针噢&#xff0c;在上一篇博客中&#xff0c;我已经写过了字符指针、数组指针、指针数组、数组传参和指针传参的知识点&#xff0c;那么这篇博客小雅兰会讲解一下函数指针、函数指针数组 、指向函数指针数组…...

论文阅读 | Video Frame Synthesis using Deep Voxel Flow

前言&#xff1a; 视频帧生成方法&#xff08;视频插帧/视频预测&#xff09;ICCV2017 oral Video Frame Synthesis using Deep Voxel Flow 引言 当下进行视频帧合成的方法分为两种&#xff0c;第一种是光流法&#xff0c;光流准确的话效果好&#xff0c;光流不准确的话则生…...

我所理解的生活

诞生 人真正意义上的诞生应该是社会学意义上的&#xff0c;是一种意识到自我、自我与社会关系的存在&#xff0c;只有这种诞生&#xff0c;才是完整人生的基点&#xff0c;大千世界中&#xff0c;唯有人类以生活作为自己的存在方式&#xff0c;除人类以外&#xff0c;从无机界…...

debian 部署nginx https

我是flask 处理请求单进程&#xff0c; 差点意思 &#xff0c; 考虑先flask 在往下走 一&#xff1a;安装nginx 因为我是debian 系统&#xff0c;所以我的建议是直接 sudo apt-get install nginx 你也可以选择在官网下载&#xff0c; 但是我搭建ssl 的时候安装openssl非常的麻…...

SQL 层功能改进 - lookupJoin 的优化

一、传统 join 算法lookupJoin 是 join 查询的一种&#xff0c;传统 join 算法为&#xff1a;1. 遍历 A 表&#xff0c;读取一条数据 r2. 遍历 B 表&#xff0c;对于每条数据&#xff0c;与 r 进行 join 操作3. 重复 1、2 操作&#xff0c;直到 A 表遍历完所有数据二、lookupJo…...

动态规划:鸣人的影分身

在火影忍者的世界里&#xff0c;令敌人捉摸不透是非常关键的。我们的主角漩涡鸣人所拥有的一个招数——多重影分身之术——就是一个很好的例子。影分身是由鸣人身体的查克拉能量制造的&#xff0c;使用的查克拉越多&#xff0c;制造出的影分身越强。针对不同的作战情况&#xf…...

如何为三星active2手表安装自己DIY的表盘

一、步骤介绍 Step 1. 下载Galaxy watch studio&#xff1b; Step 2. 按照up主“隔壁张师傅2022”的文章进行安装。 二、安装流程简单说明&#xff1a; ① 电脑端官网下载并安装Galaxy Watch Designer或者Galaxy Watch Studio程序。 ② 关闭手表蓝牙连接&#xff0c;并打开调…...

Android 项目必备(四十二)-->Android 多窗口模式

简介 自由窗口模式: 该模式类似于常见的桌面操作系统&#xff0c; 应用界面的窗口可以自由的拖动和修改大小。 分屏模式 该模式可以在手机上使用&#xff0c; 该模式将屏幕一分为二&#xff0c; 同时显示两个应用界面。 画中画模式: 该模式主要用于TV&#xff0c; 在该模式下…...

OpenHarmony的未来和如何做好一个开源社区

今天要分享的文章&#xff0c;可能更多只是作为一种观点。主要包括2个内容。OpenHarmony的未来和如何做好一个开源社区&#xff0c;好的&#xff0c;接下来开始今天的内容。 你对OpenHarmony的未来如何看待&#xff1f; OpenHarmony的未来看起来非常光明&#xff0c;因为它具…...

二叉搜索树实现

树的导览 树由节点&#xff08;nodes&#xff09;和边&#xff08;edges&#xff09;构成&#xff0c;如下图所示。整棵树有一个最上端节点&#xff0c;称为根节点&#xff08;root&#xff09;。每个节点可以拥有具有方向的边&#xff08;directed edges&#xff09;&#xf…...

解决Spring Data Jpa 实体类自动创建数据库表失败问题

先说一下我遇到的这个问题&#xff0c;首先我是通过maven创建了一个spring boot的工程&#xff0c;引入了Spring data jpa&#xff0c;结果实体类创建好之后&#xff0c;运行工程却没有在数据库中自动创建数据表。 找了半天发现是一个配置的问题! hibernate.ddl-auto节点的配…...

Elasticsearch:创建一个简单的 “你的意思是?” 推荐搜索

“你的意思是” 是搜索引擎中一个非常重要的功能&#xff0c;因为它们通过显示建议的术语来帮助用户&#xff0c;以便他可以进行更准确的搜索。比如&#xff0c;在百度中&#xff0c;我们进行搜索时&#xff0c;它通常会显示一些更为常用推荐的搜索选项来供我们选择&#xff1a…...

urllib之ProxyHandler代理以及CookieJar的cookie内存传递和本地保存与读取的使用详解

处理更高级操作时(Cookies处理&#xff0c;代理设置)&#xff0c;需要一个强大的工具Handler&#xff0c;可以理解成各种处理器&#xff0c;有处理登录认证的、有处理Cookies的、有处理代理设置的。利用这些几乎可以做到HTTP请求中所有事情。当中urllib.request模块里的 BaseHa…...

华为造车锚定智选模式, 起点赢家赛力斯驶入新能源主航道

文|螳螂观察 作者| 易不二 近日&#xff0c;赛力斯与华为的一纸联合业务深化合作协议&#xff0c;给了频频猜测赛力斯与华为之间关系的舆论一个明确的定调&#xff1a;智选模式已成为华为与赛力斯共同推动中国新能源汽车产业高质量发展的坚定选择。 自华为智能汽车业务开启零…...

[oeasy]python0096_游戏娱乐行业_雅达利_米洛华_四人赛马_影视结合游戏

游戏娱乐行业 回忆上次内容 游戏机行业从无到有 雅达利 公司 一枝独秀并且带领 行业 发展起来 雅达利公司 优秀员工 乔布斯 在 朋友 帮助下完成了《pong》 Jobs 黑了 Woz 一部分收入 然后拿着钱 去印度禅修了 游戏行业 会如何继续 呢&#xff1f;?&#x1f914; 灵修 乔布…...

使用python测试框架完成自动化测试并生成报告-实例练习

练习一: 使用unittest 完成自动化测试并使用HttpTestRunner生成报告 1、写个简单的计算器功能&#xff0c;大小写转换功能&#xff0c;随机生成字符串功能 2、编写测试用例&#xff0c;不同的数据&#xff08;你能想到的所有测试用例&#xff09;&#xff0c;并进行断言。除0的…...

JavaWeb 实战 01 - 计算机是如何工作的

计算机是如何工作的1. 计算机发展史2. 计算机的基本组成2.1 冯诺依曼体系结构2.2 CPU的内部结构2.3 指令2.3.1 指令表2.3.1.1 寄存器2.3.2 CPU的工作流程2.4 小结3. 操作系统3.1 核心功能3.2 操作系统的软硬件结构3.3 什么是进程 / 任务3.4 进程管理3.4.1 管理3.4.2 PCB : 进程…...

线性代数学习-1

线性代数学习-1行图像和列图像行图像列图像总结本文转载于https://herosunly.blog.csdn.net/article/details/88698381 该文章本人认为十分有用&#xff0c;便自己敲一遍笔记加固印象原文链接 原文这个笔记感觉比我老师讲的更加透彻&#xff0c;清晰。很好的展示了线性代数的原…...

人工智能写的十段代码,九个通过测试了

“抢走你工作的不会是 AI &#xff0c;而是先掌握 AI 能力的人” 编程测试 1. 我想用golang实现二叉树前序&#xff0c;请你帮我写一下代码。 // 定义二叉树节点 type TreeNode struct {Val intLeft *TreeNodeRight *TreeNode }// 前序遍历 func PreOrderTraversal(root *Tre…...

巴塞尔问题数值逼近方法

巴塞尔问题&#xff1a;计算所有平方数的导数和 ∑n1∞1n2lim⁡n→∞(112122⋯1n2)\sum_{n1}^{\infty} \frac{1}{n^{2}}\lim _{n \rightarrow\infty}\left(\frac{1}{1^{2}}\frac{1}{2^{2}}\cdots\frac{1}{n^{2}}\right)n1∑∞​n21​n→∞lim​(121​221​⋯n21​) 其理论解为…...

【深度学习环境】Docker

1. Docker 相关安装配置 1.1 docker 安装 参考&#xff1a;https://www.runoob.com/docker/ubuntu-docker-install.html 1.2 nvidia-docker 安装 参考&#xff1a;https://zhuanlan.zhihu.com/p/37519492 1.3 代理加速 参考&#xff1a;https://yeasy.gitbook.io/docker_…...

基于vscode开发vue项目的详细步骤教程 2 第三方图标库FontAwesome

1、Vue下载安装步骤的详细教程(亲测有效) 1_水w的博客-CSDN博客 2、Vue下载安装步骤的详细教程(亲测有效) 2 安装与创建默认项目_水w的博客-CSDN博客 3、基于vscode开发vue项目的详细步骤教程_水w的博客-CSDN博客 目录 六、第三方图标库FontAwesome 1 安装FontAwesome 解决报…...

今天面了个腾讯拿25K出来的软件测试工程师,让我见识到了真正的天花板...

今天上班开早会就是新人见面仪式&#xff0c;听说来了个很厉害的大佬&#xff0c;年纪还不大&#xff0c;是上家公司离职过来的&#xff0c;薪资已经达到中高等水平&#xff0c;很多人都好奇不已&#xff0c;能拿到这个薪资应该人不简单&#xff0c;果然&#xff0c;自我介绍的…...

OSG三维渲染引擎编程学习之六十九:“第六章:OSG场景工作机制” 之 “6.9 OSG数据变量”

目录 第六章 OSG场景工作机制 6.9 OSG数据变量 第六章 OSG场景工作机制 作为一个成熟的三维渲染引擎,需要提供快速获取场景数据、节点等信息,具备自定义数据或动画更新接口,能接收应用程序或窗口等各类消息。OSG三维渲染引擎能较好地完成上述工作,OSG是采用什么方式或工作…...

专业网站的建设/网络营销与传统营销有哪些区别

python中继承这里主要写3点&#xff0c;一个是继承调用关系&#xff0c;一个是方法的复写&#xff0c;最后一个是继承后实例方法的使用等 1、继承&#xff0c;实例化等&#xff0c;通过实例进行巩固练习 class animal: #父类def __init__(self,leg,hand):self.leglegself.handh…...

企业网站模版/整站优化报价

全站仪常规注意事项在使用全站仪之前, 要把各种注意事项烂熟于心&#xff0c;务必检查并确认该仪器各项功能运行正常。1、不要将仪器直接对准太阳将仪器直接对准太阳会严重伤害眼睛。若仪器的物镜直接对准太阳&#xff0c; 也会损坏仪器。2、安装基座若基座安装不正确&#xff…...

怎样建设自己的美甲网站/站长之家工具

package com.bjpowernode.javase.enum2; // 采用枚举的方式改造程序 /* 总结&#xff1a; 1、枚举是一种引用数据类型 2、枚举类型怎么定义&#xff0c;语法是&#xff1f; enum 枚举类型名{ 枚举值1,枚举值2 } 3、结果只有两种情况的…...

php网站建设个人总结/全网营销

目录 零、前言 一、如何评价机器人运动规划的性能 二、有动态障碍物的情况下&#xff0c;如何实现移动机器人的安全避障 三、关于B样条曲线运动规划的讨论 四、什么样的曲线才是适合机器人跟踪的曲线 五、关于目前常用的路径/轨迹规划方法 六、关于机器人的全局规划与局…...

门户网站建设方案内容/百度人工服务24小时

1.ABA compare and swap中&#xff0c;有可能在修改后&#xff0c;又还原了&#xff0c; 则不知道是否发生了更改&#xff0c;因此每次更新加上版本号&#xff0c;则知道。 2.mysql select xxx where 条件; 比如在秒杀中&#xff0c;通过这样的sql&#xff0c;保证在有商品时…...

小企业网站建设地点/关于友谊的连接

JVM内存结构 《深入理解Java虚拟机&#xff08;第2版&#xff09;》中的描述是下面这个样子的&#xff1a; JVM的内存结构大概分为&#xff1a; 堆&#xff08;Heap&#xff09;&#xff1a;线程共享。所有的对象实例以及数组都要在堆上分配。回收器主要管理的对象。方法区&a…...