天津市城乡建设委员会网站/基本seo技术在线咨询
LangChain系列文章
- LangChain 实现给动物取名字,
- LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字
- LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄
- LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索Indexes for information retrieve
- LangChain 5易速鲜花内部问答系统
- LangChain 6根据图片生成推广文案HuggingFace中的image-caption模型
- LangChain 7 文本模型TextLangChain和聊天模型ChatLangChain
- LangChain 8 模型Model I/O:输入提示、调用模型、解析输出
- LangChain 9 模型Model I/O 聊天提示词ChatPromptTemplate, 少量样本提示词FewShotPrompt
- LangChain 10思维链Chain of Thought一步一步的思考 think step by step
- LangChain 11实现思维树Implementing the Tree of Thoughts in LangChain’s Chain
- LangChain 12调用模型HuggingFace中的Llama2和Google Flan t5
- LangChain 13输出解析Output Parsers 自动修复解析器
- LangChain 14 SequencialChain链接不同的组件
- LangChain 15根据问题自动路由Router Chain确定用户的意图
- LangChain 16 通过Memory记住历史对话的内容
- LangChain 17 LangSmith调试、测试、评估和监视基于任何LLM框架构建的链和智能代理
- LangChain 18 LangSmith监控评估Agent并创建对应的数据库
- LangChain 19 Agents Reason+Action自定义agent处理OpenAI的计算缺陷
- LangChain 20 Agents调用google搜索API搜索市场价格 Reason Action:在语言模型中协同推理和行动
- LangChain 21 Agents自问自答与搜索 Self-ask with search
- LangChain 22 LangServe用于一键部署LangChain应用程序
- LangChain 23 Agents中的Tools用于增强和扩展智能代理agent的功能
- LangChain 24 对本地文档的搜索RAG检索增强生成Retrieval-augmented generation
- LangChain 25: SQL Agent通过自然语言查询数据库sqlite
- LangChain 26: 回调函数callbacks打印prompt verbose调用
- LangChain 27 AI Agents角色扮演多轮对话解决问题CAMEL
- LangChain 28 BabyAGI编写旧金山的天气预报
- LangChain 29 调试Debugging 详细信息verbose
- LangChain 30 ChatGPT LLM将字符串作为输入并返回字符串Chat Model将消息列表作为输入并返回消息
Prompt templates 提示词模板
大多数LLM应用程序不会直接将用户输入传递给LLM。通常,它们会将用户输入添加到一个更大的文本片段中,称为提示模板,该模板提供有关特定任务的附加上下文。
在前面的示例中,我们传递给模型的文本包含生成公司名称的说明。对于我们的应用程序,如果用户只需提供公司/产品的描述而不必担心给模型提供说明,那将是很好的。
PromptTemplates正是为此而设计的!它们捆绑了从用户输入到完全格式化提示的所有逻辑。这可以非常简单地开始-例如,用于生成上述字符串的提示只是:
from langchain.prompts import PromptTemplateprompt = PromptTemplate.from_template("制造{product}的公司取什么好名字?")
prompt.format(product="彩色袜子")
制造彩色袜子的公司取什么好名字?
然而,使用这些而不是原始字符串格式化的优势有几个。你可以“部分”地提取变量 - 例如,你可以一次只格式化一些变量。你可以将它们组合在一起,轻松地将不同的模板组合成单个提示。有关这些功能的详细说明,请参阅有关提示的部分。
PromptTemplates
也可以用于生成消息列表。在这种情况下,提示不仅包含有关内容的信息,还包含每条消息(其角色,其在列表中的位置等)的信息。在这里,最常见的情况是 ChatPromptTemplate
是 ChatMessageTemplates
的列表。每个 ChatMessageTemplate
包含有关如何格式化该 ChatMessage
的说明 - 其角色,以及其内容。让我们在下面看一下:
# 导入Langchain库中的OpenAI模块,该模块提供了与OpenAI语言模型交互的功能
from langchain.llms import OpenAI # 导入Langchain库中的PromptTemplate模块,用于创建和管理提示模板
from langchain.prompts import PromptTemplate # 导入Langchain库中的LLMChain模块,它允许构建基于大型语言模型的处理链
from langchain.chains import LLMChain # 导入dotenv库,用于从.env文件加载环境变量,这对于管理敏感数据如API密钥很有用
from dotenv import load_dotenv # 导入Langchain库中的ChatOpenAI类,用于创建和管理OpenAI聊天模型的实例。
from langchain.chat_models import ChatOpenAI# 调用dotenv库的load_dotenv函数来加载.env文件中的环境变量。
# 这通常用于管理敏感数据,如API密钥。
load_dotenv() # 创建一个ChatOpenAI实例,配置它使用gpt-3.5-turbo模型,
# 设定温度参数为0.7(控制创造性的随机性)和最大令牌数为60(限制响应长度)。
chat = ChatOpenAI(model="gpt-3.5-turbo",temperature=0.7,max_tokens=120
)
# 导入Langchain库中的模板类,用于创建聊天式的提示。
from langchain.prompts import (ChatPromptTemplate,SystemMessagePromptTemplate,HumanMessagePromptTemplate
)template = "你是一个很有帮助的助手,可以进行翻译语言从 {input_language} 到 {output_language}."
human_template = "{text}"chat_prompt = ChatPromptTemplate.from_messages([("system", template),("human", human_template),
])prompt = chat_prompt.format_messages(input_language="English", output_language="Chinese", text="I love programming.")
print('prompt >>> ', prompt)# 使用chat函数(需要事先定义)发送生成的提示,获取结果。
result = chat(prompt)# 打印聊天结果。
print('result >>> ', result)
[zgpeace@zgpeaces-MacBook-Pro langchain-llm-app (develop ✗)]$ python Basic/chat_llm_prompt_template.py ──(Sat,Dec23)─┘
prompt >>> [SystemMessage(content='你是一个很有帮助的助手,可以进行翻译语言从 English 到 Chinese.'), HumanMessage(content='I love programming.')]
result >>> content='我热爱编程。'
ChatPromptTemplates也可以用其他方式构建 - 详细信息请参阅提示部分。
代码
https://github.com/zgpeace/pets-name-langchain/tree/develop
参考
https://python.langchain.com/docs/get_started/quickstart
相关文章:

LangChain 31 模块复用Prompt templates 提示词模板
LangChain系列文章 LangChain 实现给动物取名字,LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字LangChain 3使用Agent访问Wikipedia和llm-math计算狗的平均年龄LangChain 4用向量数据库Faiss存储,读取YouTube的视频文本搜索I…...

深入理解 Git 分支管理:提升团队协作与开发效率
目录 前言1 什么是分支2 分支的好处2.1 并行开发的支持2.2 独立性与隔离性2.3 灵活的版本控制2.4 提高安全性和代码质量2.5 项目历史的清晰记录 3 Git 分支操作命令3.1 git branch -v3.2 git branch 分支名称3.3 git checkout 分支名称3.4 git merge 分支名称3.5 git rebase 分…...

WPF StackPanel
StackPanel是一个控件容器,它按照一个方向(水平或垂直)堆叠子元素,使得它们沿一个轴线对齐。你可以在StackPanel中放置其他控件,如按钮、标签、文本框、图片等等。这些控件的排列方式由StackPanel按照指定的方向自动确…...

由正规表达式构造DFA,以及DFA的相关化简
目录 1.由正规式到DFA 首先讲如何从正规式到NFA 如何从NFA到DFA 2.DFA的化简 3.DFA和NFA的区别 1.由正规式到DFA 正规式--->NFA---->DFA 首先讲如何从正规式到NFA 转换规则: 例题1:这里圆圈里面的命名是随意的,只要能区别开就可以了 如何…...

模式识别与机器学习(九):Adaboost
1.原理 AdaBoost是Adaptive Boosting(自适应增强)的缩写,它的自适应在于:被前一个基本分类器误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器。同时,在…...

【JAVA】分布式链路追踪技术概论
目录 1.概述 2.基于日志的实现 2.1.实现思想 2.2.sleuth 2.2.可视化 3.基于agent的实现 4.联系作者 1.概述 当采用分布式架构后,一次请求会在多个服务之间流转,组成单次调用链的服务往往都分散在不同的服务器上。这就会带来一个问题:…...

ZooKeeper 使用介绍和原理详解
目录 1. 介绍 重要性 应用场景 2. ZooKeeper 架构 服务角色 数据模型 工作原理 3. 安装和配置 下载 ZooKeeper 安装和配置 启动 ZooKeeper 验证和管理 停止和关闭 4. ZooKeeper 数据模型 数据结构和层次命名空间: 节点类型和 Watcher 机制ÿ…...

模式识别与机器学习(八):决策树
1.原理 决策树(Decision Tree),它是一种以树形数据结构来展示决策规则和分类结果的模型,作为一种归纳学习算法,其重点是将看似无序、杂乱的已知数据,通过某种技术手段将它们转化成可以预测未知数据的树状模…...
Pinely Round 3 (Div. 1 + Div. 2)(A~D)(有意思的题)
A - Distinct Buttons 题意: 思路:模拟从(0,0)到每个位置需要哪些操作,如果总共需要4种操作就输出NO。 // Problem: A. Distinct Buttons // Contest: Codeforces - Pinely Round 3 (Div. 1 Div. 2) // URL: https…...

在Linux下探索MinIO存储服务如何远程上传文件
🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、Cpolar杂谈 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言一. 创建Buckets和Access Keys二. Linux 安装Cpolar三. 创建连接MinIO服务公网地…...

持续集成交付CICD:Linux 部署 Jira 9.12.1
目录 一、实验 1.环境 2.K8S master节点部署Jira 3.Jira 初始化设置 4.Jira 使用 一、实验 1.环境 (1)主机 表1 主机 主机架构版本IP备注master1K8S master节点1.20.6192.168.204.180 jenkins slave (从节点) jira9.12.1…...

Linux命令-查看内存、GC情况及jmap 用法
查看进程占用内存、CPU使用情况 1、查看进程 #jps 查看所有java进程 #top 查看cpu占用高进程 输入m :根据内存排序 topMem: 16333644k total, 9472968k used, 6860676k free, 165616k buffers Swap: 0k total, 0k used, 0k free, 6…...

nginx安装letsencrypt证书
1.安装推荐安装letsencrypt证书的客户端工具 官方推荐通过cerbot客户端安装letsencrypt 官方推荐使用snap客户端安装cerbot客户端 apt install snapd snap install --classic certbot 建立certbot软链接:ln -s /snap/bin/certbot /usr/bin/certbot 2.开始安装letse…...

docker笔记1-安装与基础命令
docker的用途: 可以把应用程序代码及运行依赖环境打包成镜像,作为交付介质,在各种环境部署。可以将镜像(image)启动成容器(container),并提供多容器的生命周期进行管理(…...

VSCode软件与SCL编程
原创 NingChao NCLib 博途工控人平时在哪里技术交流博途工控人社群 VSCode简称VSC,是Visual studio code的缩写,是由微软开发的跨平台的轻量级编辑器,支持几乎所有主流的开发语言的语法高亮、代码智能补全、插件扩展、代码对比等,…...

Opencv中的滤波器
一副图像通过滤波器得到另一张图像,其中滤波器又称为卷积核,滤波的过程称之为卷积。 这就是一个卷积的过程,通过一个卷积核得到另一张图片,明显发现新的到的图片边缘部分更加清晰了(锐化)。 上图就是一个卷…...

<JavaEE> 基于 TCP 的 Socket 通信模型
目录 一、认识相关API 1)ServerSocket 2)Socket 二、TCP字节流套接字通信模型概述 三、回显客户端-服务器 1)服务器代码 2)客户端代码 一、认识相关API 1)ServerSocket ServerSocket 常用构造方法ServerSocke…...

[THUPC 2024 初赛] 二进制 (树状数组单点删除+单点查询)(双堆模拟set)
题解 题目本身不难想 首先注意到所有查询的序列长度都是小于logn级别的 我们可以枚举序列长度len,然后用类似滑动窗口的方法,一次性预处理出每种字串的所有出现位置,也就是开N个set去维护所有的位置。预处理会进行O(logn)轮,每…...

机器学习算法(11)——集成技术(Boosting——梯度提升)
一、说明 在在这篇文章中,我们学习了另一种称为梯度增强的集成技术。这是我在机器学习算法集成技术文章系列中与bagging一起介绍的一种增强技术。我还讨论了随机森林和 AdaBoost 算法。但在这里我们讨论的是梯度提升,在我们深入研究梯度提升之前…...

使用GBASE南大通用负载均衡连接池
若要使用负载均衡连接池功能,需要在连接串中配置相关的关键字。有关更详细的关键字信息在 GBASE南大通用 连接参数表‛中介绍。假设存在如下场景: 现有集群中存在 4 个节点: 192.168.9.173, 192.168.9.174, 192.168.9.175, 192.168.9.17…...

Flink 数据序列化
为 Flink 量身定制的序列化框架 大家都知道现在大数据生态非常火,大多数技术组件都是运行在JVM上的,Flink也是运行在JVM上,基于JVM的数据分析引擎都需要将大量的数据存储在内存中,这就不得不面临JVM的一些问题,比如Ja…...

【并发设计模式】聊聊两阶段终止模式如何优雅终止线程
在软件设计中,抽象出了23种设计模式,用以解决对象的创建、组合、使用三种场景。在并发编程中,针对线程的操作,也抽象出对应的并发设计模式。 两阶段终止模式- 优雅停止线程避免共享的设计模式- 只读、Copy-on-write、Thread-Spec…...

Java实现非对称加密【详解】
Java实现非对称加密 1. 简介2. 非对称加密算法--DH(密钥交换)3. 非对称加密算法--RSA非对称加密算法--EIGamal5. 总结6 案例6.1 案例16.2 案例2 1. 简介 公开密钥密码学(英语:Public-key cryptography)也称非对称式密…...

simulinkveristandlabview联合仿真——模型导入搭建人机界面
目录 1.软件版本 2.搭建simulink仿真模型 编译错误 3.导入veristand并建立工程 4.veristand导入labview labview显示veristand工程数据 labview设置veristand工程数据 运行labview工程 1.软件版本 matlab2020a,veristand2020 R4,labview2020 SP…...

k8s中Helm工具实践
k8s中Helm工具实践 1)安装redis-cluster 先搭建一个NFS的SC(只需要SC,不需要pvc),具体步骤此文档不再提供,请参考前面相关章节。 下载redis-cluster的chart包 helm pull bitnami/redis-cluster --untar…...

推荐算法架构7:特征工程(吊打面试官,史上最全!)
系列文章,请多关注 推荐算法架构1:召回 推荐算法架构2:粗排 推荐算法架构3:精排 推荐算法架构4:重排 推荐算法架构5:全链路专项优化 推荐算法架构6:数据样本 推荐算法架构7:特…...

Web前端 ---- 【Vue】vue路由守卫(全局前置路由守卫、全局后置路由守卫、局部路由path守卫、局部路由component守卫)
目录 前言 全局前置路由守卫 全局后置路由守卫 局部路由守卫之path守卫 局部路由守卫之component守卫 前言 本文介绍Vue2最后的知识点,关于vue的路由守卫。也就是鉴权,不是所有的组件任何人都可以访问到的,需要权限,而根据权限…...

uniapp点击tabbar之前做判断
在UniApp中,可以通过监听 tabBar 的 click 事件来在点击 tabBar 前做判断。具体步骤如下: 在 pages.json 文件中配置 tabBar,例如: {"pages":[{"path":"pages/home/home","name":"h…...

DLLNotFoundException:xxx tolua... 错误打印
DLLNotFoundException:xxx tolua... 错误打印 一、DLLNotFoundException介绍二、Plugins文件夹文件目录结构如下: 三、Plugins中的Android文件夹四、Plugins中的IOS文件夹这里不说了没测试过不过原理应该也是选择对应的平台即可五、Plugins中的x86和X86_64文件夹 一…...

Python量化投资——金融数据最佳实践: 使用qteasy+tushare搭建本地金融数据仓库并定期批量更新【附源码】
用qteasytushare实现金融数据本地化存储及访问 目的什么是qteasy什么是tushare为什么要本地化使用qteasy创建本地数据仓库qteasy支持的几种本地化仓库类型配置本地数据仓库配置tushare 的API token 配置本地数据源 —— 用MySQL数据库作为本地数据源下载金融历史数据 数据的定期…...