AlignBench:量身打造的中文大语言模型对齐评测
对齐(Alignment),是指大语言模型(LLM)与人类意图的一致性。换言之,就是让LLM生成的结果更加符合人类的预期,包括遵循人类的指令,理解人类的意图,进而能产生有帮助的回答等。对齐是决定LLM能否在实际场景中得到真正应用的关键因素。因此,评估模型的对齐水平显得至关重要 —— 如果没有评估,我们就无法判断模型的优劣。
然而,至今为止,中文评测领域关于对齐的评测仍然是一片空白。当前广泛使用的一些评测数据集,如 MMLU,C-Eval 等,与真实使用场景的差别较大,不能有效评估模型的指令遵循能力。针对对齐水平的英文评测数据集,如 MT-Bench,AlpacaEval等,受限于其语言、数量、评测方式,也并不能有效评估中文大模型的对齐水平。考虑到以上因素,以及实际的需求,智谱清言团队推出了AlignBench。
论文:https://arxiv.org/abs/2311.18743
数据、代码:https://github.com/THUDM/AlignBench
项目网站:LLMBench

AlignBench是一个多维度、综合性的评测基准。目前来看,这是第一个专为中文大模型设计,能够在多维度上细致评测模型和人类意图对齐水平的评测基准。将 AlignBench 在评测数据和评测方法上与其他基准的对比情况总结如下:

为了让开发人员能够更加高效地完成评估,作者也开发了自动评估模型 CritiqueLLM ,它是一个能够达到 GPT-4 95% 评估能力的专用的评测模型。可以在 AlignBench 网站上使用 CritiqueLLM 进行评测。
数据集
AlignBench 从 ChatGLM 真实的使用场景中构建,经过初步构造,敏感性筛查,参考答案生成,难度筛选等步骤,构建了具有真实性、挑战性的评测数据集。AlignBench 构建了综合全面的分类体系,分为 8 个大类。

评测方法
AlignBench 使用评分模型(GPT-4,CritiqueLLM)为每个模型的回答打 1-10 的综合分数,代表其回答质量。AlignBench 构建了多维度、规则校准的模型评测方法,有效提升了模型评分和人类评分的一致性,以及模型评价的质量。
1. 多维度:AlignBench 针对每个种类定制了多个细分的评测维度(如创造性、逻辑性等等)。
2. 规则校准:AlignBench 引入了细致的打分规则,提升和人类的一致程度。
评测表明,所提出的模型评测方法提高了和人类评分的一致性。在生成的分析上,所提出的方法能够显著提高分析的质量。在对分析质量的成对评估中,所提出的方法分别以 12.4% 和 20.40% 的胜负差显著胜出。
评测结果
使用 gpt-4-0613 和 CritiqueLLM 分别作为评分模型对 17 个中文大模型进行了评测,结果分别如下。


结果表明:
1. 中文大模型相比于 gpt-4,在逻辑推理能力上差距较大。
2. 顶尖中文大模型相比于 gpt-4,在中文相关能力(尤其是中文理解类)能取得相近甚至更好的表现。
3. 中文大模型的开源活力充沛,顶尖开源模型对齐表现接近闭源模型,已处于同一梯队。
相关文章:
AlignBench:量身打造的中文大语言模型对齐评测
对齐(Alignment),是指大语言模型(LLM)与人类意图的一致性。换言之,就是让LLM生成的结果更加符合人类的预期,包括遵循人类的指令,理解人类的意图,进而能产生有帮助的回答等…...
asp.net core 教程
asp.net core 教程 写在前面新建项目Get和PostGETPOST MVC-模型控制视图如何通俗理解MVCMVC架构---文件夹详解Connected ServicesPropertieswwwroot依赖项ControllersModelsViews 代码实例 API模型(前后端分离)前端代码后端代码 文件配置优先级优先级顺序…...
概率论1:下象棋问题(3.5)
每日小语 时刻望着他人的眼色行事,是腾飞不了的。自己怎么想就积极地去做,这是需要胆量的。——广中平佑 题目 甲、乙二人下象棋, 每局甲胜的概率为a,乙胜的概率为b. 为简化问题,设没有和局的情况,这意味着a b1. 设想…...
LLM调研笔记
这里写目录标题 LLM调研1. 外挂知识库2. 微调数据prompting和fine-tuning的对比 3. NLP的发展4. 大语言模型的涌现能力5. 大模型的几个关键技术6. 数据预处理7. 主流架构8. 模型训练9. 大模型的微调10. 大模型的使用11. 大模型的评估 LLM调研 大模型的不足:在特定的…...
K8S----RBAC
一、角色、绑定、用户 1、 Role 与ClusterRole 1、Role 总是要在一个命名空间中设置权限,当需要创建一个Role的时候必须指定命名空间; 2、ClusterRole 是非命名空间范围的,不受命名空间局限 2 、RoleBinding 与ClusterRoleBinding 1、RoleBinding 是受命名空间限制的 2、…...
HBase 超大表迁移、备份、还原、同步演练手册:全量快照 + 实时同步(Snapshot + Replication)不停机迁移方案
博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,…...
统计直线上2个点的分布占比
直线上有6个格子,向格子里扔2个石子,共有5种可能。 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 第1种两个石子是连着的,共有5个 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 …...
uniapp创建/运行/发布项目
1、产生背景----跨平台应用框架 在移动端各大App盛行的时代,App之间的竞争也更加激烈,他们执着于让一个应用可以做多个事情 所以就应运而生了小程序,微信小程序、支付宝小程序、抖音小程序等等基于App本身的内嵌类程序。 但是各大App他不可…...
洛谷 P2367 语文成绩 刷题笔记
P2367 语文成绩 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 差分 令a[i]为b[i]数组的前缀和 a[n]b[1]b[2]b[3].....b[n]; a[n-1]b[1]b[2]b[3].....b[n-1]; 构造差分数组 b[i]a[i]-a[i-1]; 有什么好处 当我们想对a[l]--a[r]范围内所有数据加上一个数x 不必循环 for(i…...
Opencv_CUDA实现推理图像前处理与后处理
Opencv_CUDA实现推理图像前处理与后处理 通过trt 或者 openvino部署深度学习算法时,往往会通过opencv的Mat及算法将图像转换为固定的格式作为输入openvino图像的前后处理后边将在单独的文章中写出今晚空闲搜了一些opencv_cuda的使用方法,在此总结一下前…...
Android.bp 和 Android.mk 的对应关系
参考 Soong 构建系统 Android.mk 转为 Android.bp 没有分支、循环等流程控制的简单的 Android.mk ,可以通过 androidmk 命令转化为 Android.bp source 、lunch 之后执行即可。 androidmk Android.mk > Android.bp对应关系 Android 13 ,build/soon…...
力扣-收集足够苹果的最小花园周长[思维+组合数]
题目链接 题意: 给你一个用无限二维网格表示的花园,每一个 整数坐标处都有一棵苹果树。整数坐标 (i, j) 处的苹果树有 |i| |j| 个苹果。 你将会买下正中心坐标是 (0, 0) 的一块 正方形土地 ,且每条边都与两条坐标轴之一平行。 给你一个整…...
【C语言】自定义类型:结构体深入解析(三)结构体实现位段最终篇
文章目录 📝前言🌠什么是位段?🌉 位段的内存分配🌉VS怎么开辟位段空间呢?🌉位段的跨平台问题🌠 位段的应⽤🌠位段使⽤的注意事项🚩总结 📝前言 本…...
基于Hexo+GitHub Pages 的个人博客搭建
基于HexoGitHub Pages 的个人博客搭建 步骤一:安装 Node.js 和 Git步骤二:创建Github Pages 仓库步骤二:安装 Hexo步骤三:创建 Hexo 项目步骤四:配置 Hexo步骤五:创建新文章步骤六:生成静态文件…...
7. 结构型模式 - 代理模式
亦称: Proxy 意图 代理模式是一种结构型设计模式, 让你能够提供对象的替代品或其占位符。 代理控制着对于原对象的访问, 并允许在将请求提交给对象前后进行一些处理。 问题 为什么要控制对于某个对象的访问呢? 举个例子ÿ…...
挑战Python100题(6)
100+ Python challenging programming exercises 6 Question 51 Define a class named American and its subclass NewYorker. Hints: Use class Subclass(ParentClass) to define a subclass. 定义一个名为American的类及其子类NewYorker。 提示:使用class Subclass(Paren…...
gin实现登录逻辑,包含cookie,session
users/login.html {{define "users/login.html"}} <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>登录页面</title> </head> <body><form method"post" a…...
云原生Kubernetes:K8S集群版本升级(v1.22.14 - v1.23.14)
目录 一、理论 1.K8S集群升级 2.环境 3.升级集群(v1.23.14) 4.验证集群(v1.23.14) 二、实验 1. 环境 2.升级集群(v1.23.14) 2.验证集群(v1.23.14) 一、理论 1.K8S集群升级 …...
C++面向对象(OOP)编程-位运算详解
本文主要介绍原码、位运算的种类,以及常用的位运算的使用场景。 目录 1 原码、反码、补码 2 有符号和无符号数 3 位运算 4 位运算符使用规则 4.1 逻辑移位和算术移位 4.1.1 逻辑左移和算法左移 4.1.2 逻辑右移和算术右移 4.1.3 总结 4.2 位运算的应用场景 …...
linux运行服务提示报错/usr/bin/java: 没有那个文件或目录
如果是直接从官网下载的jdk解压安装,那么/usr/bin/没有java的软连接,即/usr/bin/java,所以即使在/etc/profile中配置了jdk的环境变量也没用,识别不到。 方法一:用java的执行路径配置/usr/bin/java软连接(优…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
基于单片机的宠物屋智能系统设计与实现(论文+源码)
本设计基于单片机的宠物屋智能系统核心是实现对宠物生活环境及状态的智能管理。系统以单片机为中枢,连接红外测温传感器,可实时精准捕捉宠物体温变化,以便及时发现健康异常;水位检测传感器时刻监测饮用水余量,防止宠物…...
Python学习(8) ----- Python的类与对象
Python 中的类(Class)与对象(Object)是面向对象编程(OOP)的核心。我们可以通过“类是模板,对象是实例”来理解它们的关系。 🧱 一句话理解: 类就像“图纸”,对…...
手动给中文分词和 直接用神经网络RNN做有什么区别
手动分词和基于神经网络(如 RNN)的自动分词在原理、实现方式和效果上有显著差异,以下是核心对比: 1. 实现原理对比 对比维度手动分词(规则 / 词典驱动)神经网络 RNN 分词(数据驱动)…...
