当前位置: 首页 > news >正文

智能优化算法应用:基于袋獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于袋獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于袋獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.袋獾算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用袋獾算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.袋獾算法

袋獾算法原理请参考:https://blog.csdn.net/u011835903/article/details/130543093
袋獾算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

袋獾算法参数如下:

%% 设定袋獾优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明袋獾算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于袋獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于袋獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于袋獾算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.袋獾算法4.实验参数设定5.算法结果6.参考文献7.MA…...

Ubuntu20.04-查看GPU的使用情况及输出详解

1. 查看GPU的使用情况 1.1 nvidia-smi # 直接在终端得到显卡的使用情况 # 不会自动刷新 nvidia-smi# 重定向到文件中 nvidia-smi > nvidia_smi_output.txt# 如果输出的内容部分是以省略号表示的,可以-q nvidia-smi -q 1.2 nvidia-smi -l # 会自动刷新&#x…...

Python中的数据序列

Python中的数据序列 一、作业回顾 1、求幸运数字6 幸运数字6(只要是6的倍数):输入任意数字,如数字8,生成nums列表,元素值为1~8,从中选取幸运数字移动到新列表lucky,打印nums与lucky。 # 第一步:定义二个空列表 nums = [] lucky = [] # 第二步:提示用户输入数字 n…...

带您了解目前AI在测试领域能够解决的那些问题

AI在测试领域主要应用场景 话不多说,直接给结论: 接口测试脚本的自动生成和校验(依赖研发ai工具)测试用例的自动生成UI自动化测试脚本的自动生成和校验测试文档的自动生成快速了解初涉的业务领域 关于ai对研发和测试的整体影响…...

Jmeter学习总结(2)——时间参数化time

13位的时间戳精确都毫秒级别。 常用的时间定义格式如下: log.info("${__time(,ts)}"); log.info("${ts}"); log.info(vars.get("ts")); //136232232232log.info("${__time(yyyy-MM-dd,)}"); //当前年月日2023-12-2…...

Leetcode 746 使用最小花费爬楼梯

题意理解: 给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。 一旦你支付此费用,即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯 目标:使用最小的花…...

2023/12/21作业

思维导图 代码 .text .global _start _start: 灯1 gpio时钟使能 [4]->1 0x5000A28 LDR R0,0x50000A28 指定寄存器地址 LDR R1,[R0]将寄存器取出放到R1 ORR R1,R1,#(0x1<<4)将第四位设置为1 STR R1,[R0]读取R0寄存器到R1 PE…...

Python 数据类型 (2)

1 集合类型&#xff1a;一维数组的集合 List列表是一个有序且可变的集合。允许重复成员。 turple元组是一个有序且不可更改的集合。允许重复成员。 Set集合是一个无序且无索引的集合。没有重复的成员。 dict字典是一个有序*且可变的集合。没有重复的成员。 &#xff01;&#x…...

【教程】自动检测和安装Python脚本依赖的第三方库

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhang.cn] 背景说明 对于新python环境&#xff0c;要运行某个脚本&#xff0c;可能需要安装很多库&#xff0c;一般可以通过提供的requirements.txt来自动安装。但如果没有这个txt&#xff0c;那就得手动一个一个安装&#…...

0开始配置Cartographer建图和导航定位

0开始配置Cartographer 日期&#xff1a;12-19 硬件&#xff1a;激光雷达IMU 小车的tf变换&#xff1a; 建图配置 lua文件配置&#xff1a;my_robot.lua include "map_builder.lua" include "trajectory_builder.lua"options {map_builder MAP_BUILDE…...

Python中使用SQLite数据库的方法2-2

3.3.2 创建表单及字段 通过“3.2 创建Cursor类的对象”中创建的Cursor类的对象cur创建表单及字段&#xff0c;代码如图5所示。 图5 创建表单及字段 从图5中可以看出&#xff0c;通过Cursor类的对象cur调用了Cursor类的execute()方法来执行SQL语句。该方法的参数即为要指定的S…...

零代码也能玩出花:Mugeda在H5设计中的魔法力量

文章目录 一、Mugeda零代码可视化H5设计工具简介二、Mugeda零代码可视化H5设计实战案例1. 注册并登录Mugeda账号2. 选择模板3. 编辑页面内容4. 添加动画效果5. 预览和发布 三、Mugeda零代码可视化H5设计的优势《Mugeda零代码可视化H5设计实战》内容简介作者简介目录前言/序言 随…...

分布式、CAP 和 BASE 理论

在计算机科学领域&#xff0c;分布式系统是一门极具挑战性的研究方向&#xff0c;也是互联网应用中必不可少的优化实践&#xff0c;而 CAP 理论和 BASE 理论则是分布式系统中的两个关键的概念。 什么是分布式系统 首先&#xff0c;让我们来谈谈分布式系统。你可以将分布式系统…...

django之drf框架(两个视图基类、5个扩展视图类、9个视图子类)

两个视图基类 APIView和GenericAPIView drf提供的最顶层的父类就是APIView&#xff0c;以后所有的类都继承自他 GenericAPIView继承自APIView&#xff0c;他里面封装了一些工能 基于APIViewModelSerializerResposne写5个接口 子路由&#xff1a;app01>>>urls.py …...

23种设计模式学习

设计模式的分类 总体来说设计模式分为三大类&#xff1a; 创建型模式&#xff0c;共五种&#xff1a;工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。 结构型模式&#xff0c;共七种&#xff1a;适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合…...

php 8.4 xdebug扩展编译安装方法

最新版php8.4 xdebug扩展只能通过编译方式安装, pecl是安装不了的, 编译方法如下 下载最新版xdebug git clone https://github.com/xdebug/xdebug.git 却换入xdebug目录执行编译安装xdebug cd xdebug phpize./configure --enable-xdebugmakemake install3. 配置启用xdebug 这…...

66biolinks v42.0.0 已注册 – 生物短链接、URL 缩短器、QR 码和 Web 工具 (SAAS) 源码

66biolinks v42.0.0&#xff1a;全能生物短链接与网络工具平台 一、开篇介绍 66biolinks v42.0.0是一款集生物链接、URL缩短器、二维码和网络工具于一体的综合性软件解决方案。作为社交生物链接平台的佼佼者&#xff0c;66biolinks提供了全方位的功能&#xff0c;旨在满足用户…...

《Vue2.X 进阶知识点》- 防 ElementUI Divider 分割线

前言 使用 el-divider 背景为白色是没问题的。 但当背景换成其它颜色&#xff0c;问题就出现了&#xff01;&#xff01; 仔细看原来是两层&#xff0c;默认背景色是白色。 想着把背景色改为透明应该能用&#xff0c;结果发现背面是一条实线&#xff0c;难怪要用白色遮挡…不符…...

【第十二课】KMP算法(acwing-831 / c++代码 / 思路 / 视频+博客讲解推荐)

目录 暴力做法 代码如下 KMP算法 不同的next求法-----视频讲解/博客推荐 视频推荐 博客推荐 课本上的方法- prefix的方法- 求next数组思路---next数组存放前缀表的方式 s和p匹配思路 代码如下 暴力做法 遍历s主串中每一个元素&#xff0c;如果该元素等于模板串p中…...

JSON 简介

JSON是什么&#xff1f;(了解) JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;常用于Web应用程序之间的数据传输。 JSON格式是一种文本格式&#xff0c;用于描述数据的结构和内容。它由两种基本元素组成&#xff1a;键值对和…...

Impala4.x源码阅读笔记(三)——Impala如何管理Iceberg表元数据

前言 本文为笔者个人阅读Apache Impala源码时的笔记&#xff0c;仅代表我个人对代码的理解&#xff0c;个人水平有限&#xff0c;文章可能存在理解错误、遗漏或者过时之处。如果有任何错误或者有更好的见解&#xff0c;欢迎指正。 上一篇文章Impala4.x源码阅读笔记&#xff0…...

Ubuntu2204配置samba

0.前情说明 samba服务器主要是用来局域网共享文件的&#xff0c;如果想公网共享可能行不通&#xff0c;我已经踩坑一天了 所以说如果你想满足公网samba共享你就可以不要看下去了 1.参考连接 Ubuntu 安装 Samba 服务器_ubuntu安装samba服务器-CSDN博客 2.安装samba服务 sud…...

AVL树(超详解)

文章目录 前言AVL树的概念AVL树的实现定义AVL树insert 单旋左单旋右单旋左单旋代码右单旋代码 双旋左右双旋右左双旋 测试AVL树的性能 前言 AVL树是怎么来的呢&#xff1f; 我们知道搜索二叉树会存在退化问题&#xff0c;退化以后就变成单支或者接近单支。 它的效率就变成O(N)…...

禁止浏览器记住密码和自动填充 element-ui+vue

vue 根据element-ui 自定义密码输入框&#xff0c;防止浏览器 记住密码和自动填充 <template><divclass"el-password el-input":class"[size ? el-input-- size : , { is-disabled: disabled }]"><inputclass"el-input__inner"…...

K8s实战-init容器

概念&#xff1a; 初始化容器的概念 比如一个容器A依赖其他容器&#xff0c;可以为A设置多个 依赖容易A1&#xff0c;A2&#xff0c;A3 A1,A2,A3要按照顺序启动&#xff0c;A1没有启动启动起来的 话&#xff0c;A2,A3是不会启动的&#xff0c;直到所有的静态容器全 部启动完毕…...

Vue3.2 自定义指令详解与实战

一、介绍 在Vue3中&#xff0c;自定义指令为开发者提供了一种灵活的方式来扩展Vue的HTML模板语法&#xff0c;使其能够执行特定的DOM操作或组件逻辑。不同于Vue2.x中的全局和局部指令注册方式&#xff0c;Vue3引入了Composition API&#xff0c;这使得自定义指令的编写和使用更…...

XV-3510CB振动陀螺仪传感器

XV-3510CB传感器是一款振动陀螺仪传感器&#xff0c;具有卓越的稳定性和可靠性&#xff0c;超小的封装尺寸SMD53.21.3mm&#xff0c;密封提供了良好的可持续环保能力&#xff0c;采用振动晶体&#xff0c;该传感器具有稳定的性能和超长的寿命。振动晶体的振动能够提供更为精确的…...

设计模式Java向

设计原则&#xff1a; 开闭原则&#xff1a; 用例对象和提供抽象功能进行分割&#xff0c;用例不变&#xff0c;抽象功能被实现&#xff0c;用于不断的扩展&#xff0c;于是源代码不需要进行修改&#xff0c;只在原有基础上进行抽象功能的实现从而进行代码扩展。不变源于代码…...

图片素材管理软件Eagle for mac提高素材整理维度

Eagle for mac是一款图片素材管理软件&#xff0c;支持藏网页图片&#xff0c;网页截屏&#xff0c;屏幕截图和标注&#xff0c;自动标签和筛选等功能&#xff0c;让你设计师方便存储需要的素材和查找&#xff0c;提供工作效率。 Eagle mac软件介绍 Eagle mac帮助你成为更好、…...

Transformer各模块结构详解(附图)

前言&#xff1a;基于TRANSFORMER的结构在视觉领域是承上启下的作用。刚接触会比较难&#xff0c;上的话需要对RNN&#xff0c;LSTM&#xff0c;ATTENTION先有初步的了解。下的话需要学习VIT&#xff0c;GPT&#xff0c;DETR等结构先了解TRANSFORMER都是必要的。 参考&#xff…...

美容公司网站什么做才好/网店推广平台

当在一个controller中 通过设置$scope的数据&#xff0c;来影响其它control的范围时&#xff0c;可以使用$rootScope 举个例子&#xff1a; 在一个control A范围内设置 mainApp.controller(menuController, function($scope,$rootScope) { $rootScope.menus{} $r…...

借贷网站建设/互联网推广是什么意思

hdfs常用命令&#xff0c;可查看博文 hdfs常用命令 //从本地加载数据到表,linux上的文件不会丢失&#xff0c;相当于是复制 ,这是 追加的模式 load data local inpath /data/log/1.txt into table employee; //从本地加载数据到表,linux上的文件不会丢失&#xff0c;相当于是复…...

江苏省建设工程管理局网站/百度竞价推广费用

理论上这个安装应该没什么问题。。 我看到网上攻略都是说全局安装express&#xff0c;然后因为4.0版本将命令行工具分离出来了。 所以需要安装npm install express-generator -g 但是我的node.js有点特殊&#xff0c;我之前安装一个什么东西将npm版本降低了。。然后前几天又安…...

公司网站建设需求书/亚马逊排名seo

在JMeter BeanShell 前置处理器中&#xff0c;您可以使用下面的代码来定义长度为2的数组&#xff1a; int[] myArray new int[2]; myArray[0] 1; myArray[1] 2;该代码创建了一个名为"myArray"的整型数组&#xff0c;并初始化为具有两个元素&#xff0c;分别为1和2。…...

做网站选大公司好还是小公司好/网站策划是做什么的

以下文字转载自&#xff1a;http://blog.csdn.net/lbj05/article/details/6297214&#xff0c;对原作者表示感谢和敬意。iPhone SDK提供了多种动画手段&#xff0c;UIView、UIImageView和CALayer都支持动画。但如何处理常见的gif动画呢&#xff1f;UIWebView提供了答案&#xf…...

菏泽哪里做网站/江苏建站

最近参与一个开源项目&#xff0c;一个功能的实现&#xff0c;用到了 druid 解析器来解析SQL&#xff0c;记录下如果使用 druid 来解析SQL&#xff0c;实现对SQL的拦截改写。1. 对 insert 语句进行解析&#xff1a;private static String convertInsertSQL(String sql){try{MyS…...