Hive生产调优介绍
1.Fetch抓取
Fetch抓取是指,Hive中对某些情况的查询可以不必使用MapReduce计算。例如:SELECT * FROM employees;在这种情况下,Hive可以简单地读取employee对应的存储目录下的文件,然后输出查询结果到控制台。
在hive-default.xml.template文件中hive.fetch.task.conversion默认是more,老版本hive默认是minimal,该属性修改为more以后,在全局查找、字段查找、limit查找等都不走mapreduce。
<property><name>hive.fetch.task.conversion</name><value>more</value><description>Expects one of [none, minimal, more].Some select queries can be converted to single FETCH task minimizing latency.Currently the query should be single sourced not having any subquery and should not haveany aggregations or distincts (which incurs RS), lateral views and joins.1. none : disable hive.fetch.task.conversion2. minimal : SELECT STAR, FILTER on partition columns, LIMIT only3. more : SELECT, FILTER, LIMIT only (support TABLESAMPLE and virtual columns)</description></property>
案例实操:
1)把hive.fetch.task.conversion设置成none,然后执行查询语句,都会执行mapreduce程序。
hive (default)> set hive.fetch.task.conversion=none;
hive (default)> select * from emp;
hive (default)> select ename from emp;
hive (default)> select ename from emp limit 3;
2)把hive.fetch.task.conversion设置成more,然后执行查询语句,如下查询方式都不会执行mapreduce程序。
hive (default)> set hive.fetch.task.conversion=more;
hive (default)> select * from emp;
hive (default)> select ename from emp;
hive (default)> select ename from emp limit 3;
2.本地模式
大多数的Hadoop Job是需要Hadoop提供的完整的可扩展性来处理大数据集的。不过,有时Hive的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能会比实际job的执行时间要多的多。对于大多数这种情况,Hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间可以明显被缩短。
用户可以通过设置hive.exec.mode.local.auto的值为true,来让Hive在适当的时候自动启动这个优化。
set hive.exec.mode.local.auto=true; //开启本地mr
//设置local mr的最大输入数据量,当输入数据量小于这个值时采用local mr的方式,默认为134217728,即128M
set hive.exec.mode.local.auto.inputbytes.max=50000000;
//设置local mr的最大输入文件个数,当输入文件个数小于这个值时采用local mr的方式,默认为4
set hive.exec.mode.local.auto.input.files.max=10;
案例实操:
1)开启本地模式,并执行查询语句
hive (default)> set hive.exec.mode.local.auto=true;
hive (default)> select * from emp cluster by deptno;
Time taken: 1.328 seconds, Fetched: 14 row(s)
2)关闭本地模式,并执行查询语句
hive (default)> set hive.exec.mode.local.auto=false;
hive (default)> select * from emp cluster by deptno;
Time taken: 20.09 seconds, Fetched: 14 row(s)
3.表的优化
3.1小表、大表Join
将key相对分散,并且数据量小的表放在join的左边,这样可以有效减少内存溢出错误发生的几率;再进一步,可以使用map join让小的维度表(1000条以下的记录条数)先进内存。在map端完成reduce。
实际测试发现:新版的hive已经对小表JOIN大表和大表JOIN小表进行了优化。小表放在左边和右边已经没有明显区别。
案例实操
1.需求
测试大表JOIN小表和小表JOIN大表的效率
2.建大表、小表和JOIN后表的语句
// 创建大表
create table bigtable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';
// 创建小表
create table smalltable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';
// 创建join后表的语句
create table jointable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';
3.分别向大表和小表中导入数据
hive (default)> load data local inpath '/opt/module/data/bigtable' into table bigtable;
hive (default)>load data local inpath '/opt/module/data/smalltable' into table smalltable;
4.关闭mapjoin功能(默认是打开的)
set hive.auto.convert.join = false;
5.执行小表JOIN大表语句
insert overwrite table jointable
select b.id, b.time, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
from smalltable s
left join bigtable b
on b.id = s.id;
Time taken: 35.921 seconds
Time taken: 43.152 seconds
6.执行大表JOIN小表语句
insert overwrite table jointable
select b.id, b.time, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
from bigtable b
left join smalltable s
on s.id = b.id;
Time taken: 34.196 seconds
Time taken: 40.807 seconds
3.2 大表Join大表
1.空KEY过滤
有时join超时是因为某些key对应的数据太多,而相同key对应的数据都会发送到相同的reducer上,从而导致内存不够。此时我们应该仔细分析这些异常的key,很多情况下,这些key对应的数据是异常数据,我们需要在SQL语句中进行过滤。例如key对应的字段为空,操作如下:
案例实操
(1)配置历史服务器
配置mapred-site.xml
<property>
<name>mapreduce.jobhistory.address</name>
<value>hadoop102:10020</value>
</property>
<property><name>mapreduce.jobhistory.webapp.address</name><value>hadoop102:19888</value>
</property>
启动历史服务器
sbin/mr-jobhistory-daemon.sh start historyserver
查看jobhistory
http://localhost:19888/jobhistory
(2)创建原始数据表、空id表、合并后数据表
// 创建原始表
create table ori(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';
// 创建空id表
create table nullidtable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';
// 创建join后表的语句
create table jointable(id bigint, time bigint, uid string, keyword string, url_rank int, click_num int, click_url string) row format delimited fields terminated by '\t';
(3)分别加载原始数据和空id数据到对应表中
hive (default)> load data local inpath '/opt/module/datas/ SogouQ1.txt' into table ori;
hive (default)> load data local inpath '/opt/module/data/nullid' into table nullidtable;
(4)测试不过滤空id
hive (default)> insert overwrite table jointable
select n.* from nullidtable n left join ori o on n.id = o.id;
Time taken: 42.038 seconds
Time taken: 37.284 seconds
Time taken: 41.743 seconds
(5)测试过滤空id
hive (default)> insert overwrite table jointable
select n.* from (select * from nullidtable where id is not null ) n left join ori o on n.id = o.id;
Time taken: 31.725 seconds
Time taken: 28.876 seconds
Time taken: 33.29 seconds
2.空key转换
有时虽然某个key为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在join的结果中,此时我们可以表a中key为空的字段赋一个随机的值,使得数据随机均匀地分不到不同的reducer上。例如:
案例实操:
不随机分布空null值:
(1)设置5个reduce个数
set mapreduce.job.reduces = 5;
(2)JOIN两张表
insert overwrite table jointable
select n.* from nullidtable n left join ori b on n.id = b.id;
结果:如下图所示,可以看出来,出现了数据倾斜,某些reducer的资源消耗远大于其他reducer。
随机分布空null值
(1)设置5个reduce个数
set mapreduce.job.reduces = 5;
(2)JOIN两张表
insert overwrite table jointable
select n.* from nullidtable n full join ori o on
case when n.id is null then concat('hive', rand()) else n.id end = o.id;
结果:如下图所示,可以看出来,消除了数据倾斜,负载均衡reducer的资源消耗
3.3 MapJoin
如果不指定MapJoin或者不符合MapJoin的条件,那么Hive解析器会将Join操作转换成Common Join,即:在Reduce阶段完成join。容易发生数据倾斜。可以用MapJoin把小表全部加载到内存在map端进行join,避免reducer处理。
1.开启MapJoin参数设置
(1)设置自动选择MapJoin
set hive.auto.convert.join = true; 默认为true
(2)大表小表的阈值设置(默认25M一下认为是小表):
set hive.mapjoin.smalltable.filesize=25000000;
2.MapJoin工作机制,如图6-15所示
案例实操:
(1)开启Mapjoin功能
set hive.auto.convert.join = true; 默认为true
(2)执行小表JOIN大表语句
insert overwrite table jointable
select b.id, b.time, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
from smalltable s
join bigtable b
on s.id = b.id;
Time taken: 24.594 seconds
Time taken: 26.212 seconds
(3)执行大表JOIN小表语句
insert overwrite table jointable
select b.id, b.time, b.uid, b.keyword, b.url_rank, b.click_num, b.click_url
from bigtable b
join smalltable s
on s.id = b.id;
Time taken: 24.315 seconds
Time taken: 24.498 seconds
3.4 Group By
默认情况下,Map阶段同一Key数据分发给一个reduce,当一个key数据过大时就倾斜了。
并不是所有的聚合操作都需要在Reduce端完成,很多聚合操作都可以先在Map端进行部分聚合,最后在Reduce端得出最终结果。
1.开启Map端聚合参数设置
(1)是否在Map端进行聚合,默认为True
hive.map.aggr = true
(2)在Map端进行聚合操作的条目数目
hive.groupby.mapaggr.checkinterval = 100000
(3)有数据倾斜的时候进行负载均衡(默认是false)
hive.groupby.skewindata = true
当选项设定为 true,生成的查询计划会有两个MR Job。第一个MR Job中,Map的输出结果会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MR Job再根据预处理的数据结果按照Group By Key分布到Reduce中(这个过程可以保证相同的Group By Key被分布到同一个Reduce中),最后完成最终的聚合操作。
3.5 Count(Distinct) 去重统计
数据量小的时候无所谓,数据量大的情况下,由于COUNT DISTINCT操作需要用一个Reduce Task来完成,这一个Reduce需要处理的数据量太大,就会导致整个Job很难完成,一般COUNT DISTINCT使用先GROUP BY再COUNT的方式替换:
案例实操
1.创建一张大表
hive (default)> create table bigtable(id bigint, time bigint, uid string, keyword
string, url_rank int, click_num int, click_url string) row format delimited
fields terminated by '\t';
2.加载数据
hive (default)> load data local inpath '/opt/module/datas/bigtable' into tablebigtable;
3.设置5个reduce个数
set mapreduce.job.reduces = 5;
4.执行去重id查询
hive (default)> select count(distinct id) from bigtable;
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 7.12 sec HDFS Read: 120741990 HDFS Write: 7 SUCCESS
Total MapReduce CPU Time Spent: 7 seconds 120 msec
OK
c0
100001
Time taken: 23.607 seconds, Fetched: 1 row(s)
Time taken: 39.753 seconds, Fetched: 1 row(s)
5.采用GROUP by去重id
hive (default)> select count(id) from (select id from bigtable group by id) a;
Stage-Stage-1: Map: 1 Reduce: 5 Cumulative CPU: 17.53 sec HDFS Read: 120752703 HDFS Write: 580 SUCCESS
Stage-Stage-2: Map: 1 Reduce: 1 Cumulative CPU: 4.29 sec HDFS Read: 9409 HDFS Write: 7 SUCCESS
Total MapReduce CPU Time Spent: 21 seconds 820 msec
OK
_c0
100001
Time taken: 50.795 seconds, Fetched: 1 row(s)
Time taken: 63.108 seconds, Fetched: 1 row(s)
虽然会多用一个Job来完成,但在数据量大的情况下,这个绝对是值得的。
3.6 笛卡尔积
尽量避免笛卡尔积,join的时候不加on条件,或者无效的on条件,Hive只能使用1个reducer来完成笛卡尔积。
3.7 行列过滤
列处理:在SELECT中,只拿需要的列,如果有,尽量使用分区过滤,少用SELECT *。
行处理:在分区剪裁中,当使用外关联时,如果将副表的过滤条件写在Where后面,那么就会先全表关联,之后再过滤,比如:
案例实操:
1.测试先关联两张表,再用where条件过滤
hive (default)> select o.id from bigtable b
join ori o on o.id = b.id
where o.id <= 10;
Time taken: 34.406 seconds, Fetched: 100 row(s)
2.通过子查询后,再关联表
hive (default)> select b.id from bigtable b
join (select id from ori where id <= 10 ) o on b.id = o.id;
Time taken: 30.058 seconds, Fetched: 100 row(s)
3.8 动态分区调整
关系型数据库中,对分区表Insert数据时候,数据库自动会根据分区字段的值,将数据插入到相应的分区中,Hive中也提供了类似的机制,即动态分区(Dynamic Partition),只不过,使用Hive的动态分区,需要进行相应的配置。
1.开启动态分区参数设置
(1)开启动态分区功能(默认true,开启)
hive.exec.dynamic.partition=true
(2)设置为非严格模式(动态分区的模式,默认strict,表示必须指定至少一个分区为静态分区,nonstrict模式表示允许所有的分区字段都可以使用动态分区。)
hive.exec.dynamic.partition.mode=nonstrict
(3)在所有执行MR的节点上,最大一共可以创建多少个动态分区。
hive.exec.max.dynamic.partitions=1000
4)在每个执行MR的节点上,最大可以创建多少个动态分区。该参数需要根据实际的数据来设定。比如:源数据中包含了一年的数据,即day字段有365个值,那么该参数就需要设置成大于365,如果使用默认值100,则会报错。
hive.exec.max.dynamic.partitions.pernode=100
(5)整个MR Job中,最大可以创建多少个HDFS文件。
hive.exec.max.created.files=100000
(6)当有空分区生成时,是否抛出异常。一般不需要设置。
hive.error.on.empty.partition=false
2.案例实操
需求:将ori中的数据按照时间(如:20111230000008),插入到目标表ori_partitioned_target的相应分区中。
(1)创建分区表
create table ori_partitioned(id bigint, time bigint, uid string, keyword string,url_rank int, click_num int, click_url string)
partitioned by (p_time bigint)
row format delimited fields terminated by '\t';
(2)加载数据到分区表中
hive (default)> load data local inpath '/home/test/ds1' into tableori_partitioned partition(p_time='20111230000010') ;
hive (default)> load data local inpath '/home/test/ds2' into table ori_partitioned partition(p_time='20111230000011') ;
(3)创建目标分区表
create table ori_partitioned_target(id bigint, time bigint, uid string,keyword string, url_rank int, click_num int, click_url string) PARTITIONED BY (p_time STRING) row format delimited fields terminated by '\t';
(4)设置动态分区
set hive.exec.dynamic.partition = true;
set hive.exec.dynamic.partition.mode = nonstrict;
set hive.exec.max.dynamic.partitions = 1000;
set hive.exec.max.dynamic.partitions.pernode = 100;
set hive.exec.max.created.files = 100000;
set hive.error.on.empty.partition = false;hive (default)> insert overwrite table ori_partitioned_target partition (p_time)
select id, time, uid, keyword, url_rank, click_num, click_url, p_time from ori_partitioned;
(6)查看目标分区表的分区情况
hive (default)> show partitions ori_partitioned_target;
4.MR优化
4.1 合理设置Map数
1)通常情况下,作业会通过input的目录产生一个或者多个map任务。
主要的决定因素有:input的文件总个数,input的文件大小,集群设置的文件块大小。
2)是不是map数越多越好?
答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。
3)是不是保证每个map处理接近128m的文件块,就高枕无忧了?
答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。
针对上面的问题2和3,我们需要采取两种方式来解决:即减少map数和增加map数;
4.2 小文件进行合并
在map执行前合并小文件,减少map数:CombineHiveInputFormat具有对小文件进行合并的功能(系统默认的格式)。HiveInputFormat没有对小文件合并功能。
set hive.input.format= org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
4.3 复杂文件增加Map数
当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。
增加map的方法为:根据computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M公式,调整maxSize最大值。让maxSize最大值低于blocksize就可以增加map的个数。
案例实操:
1.执行查询
hive (default)> select count(*) from emp;
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2.设置最大切片值为100个字节
hive (default)> set mapreduce.input.fileinputformat.split.maxsize=100;
hive (default)> select count(*) from emp;
Hadoop job information for Stage-1: number of mappers: 6; number of reducers: 1
4.4 合理设置Reduce数
1.调整reduce个数方法一
(1)每个Reduce处理的数据量默认是256MB
hive.exec.reducers.bytes.per.reducer=256000000
(2)每个任务最大的reduce数,默认为1009
hive.exec.reducers.max=1009
(3)计算reducer数的公式
N=min(参数2,总输入数据量/参数1)
2.调整reduce个数方法二
在hadoop的mapred-default.xml文件中修改
设置每个job的Reduce个数
set mapreduce.job.reduces = 15;
3.reduce个数并不是越多越好
1)过多的启动和初始化reduce也会消耗时间和资源;
2)另外,有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;
在设置reduce个数的时候也需要考虑这两个原则:处理大数据量利用合适的reduce数;使单个reduce任务处理数据量大小要合适;
5.并行执行
Hive会将一个查询转化成一个或者多个阶段。这样的阶段可以是MapReduce阶段、抽样阶段、合并阶段、limit阶段。或者Hive执行过程中可能需要的其他阶段。默认情况下,Hive一次只会执行一个阶段。不过,某个特定的job可能包含众多的阶段,而这些阶段可能并非完全互相依赖的,也就是说有些阶段是可以并行执行的,这样可能使得整个job的执行时间缩短。不过,如果有更多的阶段可以并行执行,那么job可能就越快完成。
通过设置参数hive.exec.parallel值为true,就可以开启并发执行。不过,在共享集群中,需要注意下,如果job中并行阶段增多,那么集群利用率就会增加。
set hive.exec.parallel=true; //打开任务并行执行
set hive.exec.parallel.thread.number=16; //同一个sql允许最大并行度,默认为8。
当然,得是在系统资源比较空闲的时候才有优势,否则,没资源,并行也起不来。
6.严格模式
Hive提供了一个严格模式,可以防止用户执行那些可能意想不到的不好的影响的查询。
通过设置属性hive.mapred.mode值为默认是非严格模式nonstrict 。开启严格模式需要修改hive.mapred.mode值为strict,开启严格模式可以禁止3种类型的查询。
<property><name>hive.mapred.mode</name><value>strict</value><description>The mode in which the Hive operations are being performed. In strict mode, some risky queries are not allowed to run. They include:Cartesian Product.No partition being picked up for a query.Comparing bigints and strings.Comparing bigints and doubles.Orderby without limit.
</description>
</property>
1)对于分区表,除非where语句中含有分区字段过滤条件来限制范围,否则不允许执行。换句话说,就是用户不允许扫描所有分区。进行这个限制的原因是,通常分区表都拥有非常大的数据集,而且数据增加迅速。没有进行分区限制的查询可能会消耗令人不可接受的巨大资源来处理这个表。
2)对于使用了order by语句的查询,要求必须使用limit语句。因为order by为了执行排序过程会将所有的结果数据分发到同一个Reducer中进行处理,强制要求用户增加这个LIMIT语句可以防止Reducer额外执行很长一段时间。
3)限制笛卡尔积的查询。对关系型数据库非常了解的用户可能期望在执行JOIN查询的时候不使用ON语句而是使用where语句,这样关系数据库的执行优化器就可以高效地将WHERE语句转化成那个ON语句。不幸的是,Hive并不会执行这种优化,因此,如果表足够大,那么这个查询就会出现不可控的情况。
7.JVM重用
JVM重用是Hadoop调优参数的内容,其对Hive的性能具有非常大的影响,特别是对于很难避免小文件的场景或task特别多的场景,这类场景大多数执行时间都很短。
Hadoop的默认配置通常是使用派生JVM来执行map和Reduce任务的。这时JVM的启动过程可能会造成相当大的开销,尤其是执行的job包含有成百上千task任务的情况。JVM重用可以使得JVM实例在同一个job中重新使用N次。N的值可以在Hadoop的mapred-site.xml文件中进行配置。通常在10-20之间,具体多少需要根据具体业务场景测试得出。
<property><name>mapreduce.job.jvm.numtasks</name><value>10</value><description>How many tasks to run per jvm. If set to -1, there isno limit. </description>
</property>
这个功能的缺点是,开启JVM重用将一直占用使用到的task插槽,以便进行重用,直到任务完成后才能释放。如果某个“不平衡的”job中有某几个reduce task执行的时间要比其他Reduce task消耗的时间多的多的话,那么保留的插槽就会一直空闲着却无法被其他的job使用,直到所有的task都结束了才会释放。
8.推测执行
在分布式集群环境下,因为程序Bug(包括Hadoop本身的bug),负载不均衡或者资源分布不均等原因,会造成同一个作业的多个任务之间运行速度不一致,有些任务的运行速度可能明显慢于其他任务(比如一个作业的某个任务进度只有50%,而其他所有任务已经运行完毕),则这些任务会拖慢作业的整体执行进度。为了避免这种情况发生,Hadoop采用了推测执行(Speculative Execution)机制,它根据一定的法则推测出“拖后腿”的任务,并为这样的任务启动一个备份任务,让该任务与原始任务同时处理同一份数据,并最终选用最先成功运行完成任务的计算结果作为最终结果。
设置开启推测执行参数:Hadoop的mapred-site.xml文件中进行配置
<property><name>mapreduce.map.speculative</name><value>true</value><description>If true, then multiple instances of some map tasks may be executed in parallel.</description>
</property><property><name>mapreduce.reduce.speculative</name><value>true</value><description>If true, then multiple instances of some reduce tasks may be executed in parallel.</description>
</property>
不过hive本身也提供了配置项来控制reduce-side的推测执行:
<property><name>hive.mapred.reduce.tasks.speculative.execution</name><value>true</value><description>Whether speculative execution for reducers should be turned on. </description></property>
关于调优这些推测执行变量,还很难给一个具体的建议。如果用户对于运行时的偏差非常敏感的话,那么可以将这些功能关闭掉。如果用户因为输入数据量很大而需要执行长时间的map或者Reduce task的话,那么启动推测执行造成的浪费是非常巨大大。
10.执行计划(Explain)
1.基本语法
EXPLAIN [EXTENDED | DEPENDENCY | AUTHORIZATION] query
2.案例实操
(1)查看下面这条语句的执行计划
hive (default)> explain select * from emp;
hive (default)> explain select deptno, avg(sal) avg_sal from emp group by deptno;
(2)查看详细执行计划
hive (default)> explain extended select * from emp;
hive (default)> explain extended select deptno, avg(sal) avg_sal from emp group by deptno;
相关文章:
Hive生产调优介绍
1.Fetch抓取 Fetch抓取是指,Hive中对某些情况的查询可以不必使用MapReduce计算。例如:SELECT * FROM employees;在这种情况下,Hive可以简单地读取employee对应的存储目录下的文件,然后输出查询结果到控制台。 在hive-default.xml…...
如何理解鼠标点击事件在程序中的处理
在计算机用户界面中,鼠标点击是一个常见的交互动作。那么,当你按下鼠标时,程序是如何知道这个点击是否针对它自己的按钮的呢?本文将探讨鼠标点击事件在操作系统和应用程序之间的传递过程。 鼠标点击事件的捕获 当你按下鼠标按钮…...
基于JWT的用户token验证
1. 基于session的用户验证 2. 基于token的用户身份验证 3. jwt jwt代码实现方式 1. 导包 <dependency><groupId>com.auth0</groupId><artifactId>java-jwt</artifactId><version>3.18.2</version> </dependency> 2. 在登录…...
通过 conda 安装 的 detectron2
从 detectron2官网 发现预编译的版本最高支持 pytorch1.10、cuda11.3。(2023-12-26) 1、安装 conda 环境。 conda create --name detectron2 python3.8 2、安装 pytorch1.10 和 cuda11.3。 pip3 install torch1.10.0cu113 torchvision0.11.1cu113 torc…...
嵌入式开发——SPI OLED屏幕案例
学习目标 掌握移植方法掌握调试方式学习内容 需求 官方测试示例 选择对应的平台 测试示例中,找到芯片对应平台,我们选择的是STM32F407 修改例程 已知错误修改:...
ibm上电时序(视频内容)
...
如何在Vue.js中使用$emit进行组件通信
Vue.js是一个渐进式JavaScript框架,它以其简洁的数据绑定和组件系统而闻名。在构建具有多个组件层次的Vue应用时,组件间的通信成为一个关键的话题。Vue提供了一种名为$emit的方法,允许子组件向父组件发送消息。本文将详细介绍如何在Vue中使用…...
SPSS相关统计学知识精要回顾-大家都来做做
很多学生问我,学SPSS如果想深入学,那么统计学原理应该掌握到什么样的水准,我想说的是,如果真的想融会贯通,而不是短暂过关,那么应该具备一定的统计学基础,但是统计学知识也不是面面俱到都要去学…...
React Native 从类组件到函数组件
1. 发展趋势 React Native社区中的趋势是朝向使用函数组件(Functional Components)和Hooks的方向发展,而不是使用类组件(Class Components)。 React Native自推出Hooks API以来,函数组件和Hooks的使用变得…...
Redis 快速搭建与使用
文章目录 1. Redis 特性1.1 多种数据类型支持1.2 功能完善1.3 高性能1.4 广泛的编程语言支持1.5 使用简单1.6 活跃性高/版本迭代快1.7 I/O 多路复用模型 2. Redis发展历程3. Redis 安装3.1 源码安装3.1.1 下载源码包3.1.2 解压安装包3.1.3 切换到 Redis 目录3.1.4 编译安装 3.2…...
SpringBoot集成etcd,实现实时监听,实现配置中心
etcd 是一个分布式键值对存储,设计用来可靠而快速的保存关键数据并提供访问。通过分布式锁,leader选举和写屏障(write barriers)来实现可靠的分布式协作。etcd集群是为高可用,持久性数据存储和检索而准备。 以下代码实现的主要业务是…...
JavaScript元素根据父级元素宽高缩放
/*** 等比缩放* param wrap 外部容器* param container 待缩放的容器* returns {{width: number, height: number}}* 返回值:width:宽度, height:高度*/aspectRatio(wrap: any, container: any) {// w h / ratio, h w * ratioconst wrapW wrap.width;const wrapH…...
易趋产品升级(EasyTrack 11_V1.3) | 集成飞书、WPS、个性化设置,增强团队协作和用户体验
企业在项目管理过程中,经常会遇到项目信息同步不及时、沟通障碍以及管理软件使用不便捷等难题,导致团队协作效率低下。这种情况下,如果使用了多个办公软件(如:钉钉、企业微信、项目管理软件等),…...
帆软FineBi V6版本经验总结
帆软FineBi V6版本经验总结 BI分析出现背景 现在是一个大数据的时代,每时每刻都有海量的明细数据出现。这时大数据时代用户思维是:1、数据的爆炸式增长,人们比起明细数据,更在意样本的整体特征、相互关系。2、基于明细的“小…...
03.MySQL的体系架构
MySQL的体系架构 一、MySQL简介二、MySQL的体系架构三、MySQL的内存结构四、MySQL的文件结构 一、MySQL简介 MySQL是一个开源的关系型数据库管理系统(RDBMS),由瑞典MySQL AB公司开发,后被Sun公司收购,Sun公司被Oracle…...
随笔笔记-2023
随笔 computed 是基于他们的依赖进行缓存的,。如果要随时计算 new Date().now(因为不是响应式的),那么需要用 computed。 如果不希望用缓存那么就用 methods 字符与字节 1 字节8 位1B8 bit;1KB 1024B,1MB1024KB1024*1024B 编码:…...
2023.12.31 Python 词频统计
练习:使用Python中的filter、map、reduce实现词频统计 样例数据: hello world java python java java hadoop spark spark python 需求分析: 1- 文件中有如上的示例数据 2- 读取文件内容。可以通过readline() 3- 将一行内容切分得到多个单…...
day12--java高级编程:网络通讯
5 Day19–网络通信(Socket通信) 说明: io流是跟本地的文件进行数据的传输,读或者写。网络通信:数据在网络中进行的传输。 本章专题与脉络 1. 网络编程概述 Java是 Internet 上的语言,它从语言级上提供了对网络应用程序的支持&…...
MongoDB聚合:$out
$out阶段将聚合管道产生的文档写入到指定的集合,从MongoDB4.4开始,支持指定数据库。$out阶段必须放在聚合管道的最后,支持聚合结果任意大小的数据集。 警告: 如果指定的集合已经存在则会被替换。 语法 用法 1: 定数…...
一次奇葩的spin_lock_irq / spin_unlock_irq使用不当导致的系统卡死分析
这是在调试内核block层时遇到的一例奇葩的soft lock锁死问题(内核版本centos 8.3,4.18.0-240),现场如下: [ 760.247152] watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/0:1:2635]……………..[ 760.247184] CPU: 0 PID: 26…...
公司创建百度百科需要哪些内容?
一个公司或是一个品牌想要让自己更有身份,更有知名度,更有含金量,百度百科词条是必不可少的。通过百度百科展示公司的详细信息,有助于增强用户对公司的信任感,提高企业形象。通过百度百科展示公司的发展历程、领导团队…...
qt中信号槽第五个参数
文章目录 connent函数第五个参数的作用自动连接(Qt::AutoConnection)直接连接(Qt::DirectConnection - 同步)同线程不同线程 队列连接(Qt::QueuedConnection - 异步)同一线程不同线程 锁定队列连接(Qt::BlockingQueuedConnection) connent函数第五个参数的作用 connect(const …...
模式识别与机器学习-SVM(线性支持向量机)
线性支持向量机 线性支持向量机间隔距离学习的对偶算法算法:线性可分支持向量机学习算法线性可分支持向量机例子 谨以此博客作为复习期间的记录 线性支持向量机 在以上四条线中,都可以作为分割平面,误差率也都为0。但是那个分割平面效果更好呢࿱…...
【并行计算】GPU,CUDA
一、CUDA层次结构 1.kernel核函数 一个CUDA程序是一个kernel核函数被GPU的多个计算单元并行执行的过程,CUDA给了如下抽象 dim3 threadsPerBlock(4, 3, 1); dim3 numBlocks(3, 2, 1); matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C); 2.G…...
计算机网络教案——计算机网络设备章节
第五章 计算机网络设备 一、教学目标: 1. 了解计算机网络的主要设备 2. 了解计算机网络设备的主要原理 3. 掌握计算机网络设备的基本用途 4. 掌握计算机网络设备的使用常识 二、教学重点、难点 计算机网络设备的主要原理 三、技能培训重点、难点 计算机网络设备的使用…...
什么是SLAM中的回环检测,如果没有回环检测会怎样
目录 什么是回环检测 如果没有回环检测 SLAM(Simultaneous Localization and Mapping,即同时定位与地图构建)是一种使机器人或自动驾驶汽车能够在未知环境中建立地图的同时定位自身位置的技术。回环检测(Loop Closure Detectio…...
ubuntu 通过文件设置静态IP、DNS、网关
1. 确定网络接口名称 首先,使用 ip a 命令确定您要配置的网络接口名称。 2. 编辑 Netplan 配置文件 使用文本编辑器(如 nano)打开或创建 Netplan 配置文件: sudo nano /etc/netplan/01-netcfg.yaml3. 输入 Netplan 配置 在编…...
mapboxgl 中热力图的实现以及给热力图点增加鼠标移上 popup 效果
文章目录 概要效果预览技术思路技术细节小结 概要 本篇文章还是关于最近做到的 mapboxgl 地图展开的。 借鉴官方示例:https://iclient.supermap.io/examples/mapboxgl/editor.html#heatMapLayer 效果预览 技术思路 将接口数据渲染到地图中形成热力图。还需要将热…...
golang并发安全-sync.map
sync.map解决的问题 golang 原生map是存在并发读写的问题,在并发读写时候会抛出异常 func main() {mT : make(map[int]int)g1 : []int{1, 2, 3, 4, 5, 6}g2 : []int{4, 5, 6, 7, 8, 9}go func() {for i : range g1 {mT[i] i}}()go func() {for i : range g2 {mT[…...
开发第一个SpringBoot程序
使用命令创建Maven工程 mvn archetype:generate -DgroupIdorg.sang -DartifactIdchapter01 -DarchetypeArtifactIdmaven-archetype-quickstart -DinteractiveModefalse 参数说明: -DgroupId 组织Id(项目包名) -DartifactId 项目名称或模块…...
宁波最靠谱的网站建设/seo关键词优化经验技巧
本文发布于我的个人网站:https://wintc.top/article/58,转载请注明。 多行文本超过指定行数隐藏超出部分并显示“...查看全部”是一个常遇到的需求,网上也有人实现过类似的功能,不过还是想自己写写看,于是就写了一个Vu…...
wap网站建设/磁力搜索引擎哪个好
654琴弦,面对吉他正面往琴头上部方向转(逆时针)是紧的 321琴弦,面对吉他正面往琴尾下部方向转(逆时针)是紧的...
龙岗网站制作市场/网上营销的平台有哪些
昨天在做项目的时候,代码写完-编译-运行。然后出现了这个可爱的“HTTP Error 503。The service is unavailable”。 这是电脑术语!意思是“地址错误,主机没找到!(没看到主机)”~~~ 真晕,以前没有遇到过这个情况。唉&am…...
品牌策划包括哪些内容/巩义关键词优化推广
近年备孕夫妻出现宫外孕大出血,医院上演生死时速的新闻屡见不鲜,而我们不孕医生对于碰到宫外孕的病人也是精神紧绷,究其原因是宫外孕一旦发生破裂,短时间内就会失血过多,危及孕妇生命。本文就具体了解关于宫外孕的知识…...
c 网站开发/免费技能培训在哪里报名
/*** * A:案例演示* 集合嵌套之ArrayList嵌套ArrayList* 案例:* 我们学科,学科又分为若个班级* 整个学科一个大集合* 若干个班级分为每一个小集合*/Testpublic void twoArrary() {ArrayList<ArrayList<Person>> list new ArrayList<>();ArrayList<Person…...
关闭网站弹窗代码/厦门网站关键词推广
PHP怎么实现的根据银行卡号判断是哪个银行?提问:PHP怎么实现的根据银行卡号判断是哪个银行?回答如下:bankList.php的内容会写在下面。请全选其中所有数据后,另存为bankList.php文件使用。header(Content-type:text/htm…...